Reinforcement Learning Based Trajectory Planning for Multi-UAV Load Transportation

被引:0
|
作者
Estevez, Julian [1 ]
Manuel Lopez-Guede, Jose [2 ]
del Valle-Echavarri, Javier [2 ]
Grana, Manuel [3 ]
机构
[1] Univ Basque Country UPV EHU, Fac Engn Gipuzkoa, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Fac Engn Vitoria, Grp Computat Intelligence, Vitoria 01006, Spain
[3] Univ Basque Country, Fac Comp Sci, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Aerial robots; payload; reinforcement learning; UAVs; QUADROTOR;
D O I
10.1109/ACCESS.2024.3470509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces a novel trajectory planning approach for the transportation of cable-suspended loads employing three quadrotors, relying on a reinforcement learning (RL) algorithm. The primary objective of this path planning method is to transport the cargo smoothly while avoiding its swing. Within this proposed solution, the value function of the RL is estimated through a feature vector and a parameter vector tailored to the specific problem. The parameter vector undergoes iterative updates via a batch method, subsequently guiding the generation of the desired trajectory through a greedy strategy. Ultimately, this desired trajectory is communicated to the quadrotor controller to ensure precise trajectory tracking. Simulation outcomes demonstrate the capability of the trained parameters to effectively fit the value function.
引用
收藏
页码:144009 / 144016
页数:8
相关论文
共 50 条
  • [21] Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm
    Fu, Yuwen
    Yang, Shuai
    Liu, Bo
    Xia, E.
    Huang, Duan
    ENTROPY, 2023, 25 (09)
  • [22] Multi-UAV Synchronous Approaching Using Homotopy-Based Trajectory Planning
    Weiran Yao
    Yang Chen
    Haoyu Tian
    Chengwei Wu
    Ligang Wu
    Guidance,Navigation and Control, 2022, (02) : 5 - 30
  • [23] Multi-UAV Synchronous Approaching Using Homotopy-Based Trajectory Planning
    Yao, Weiran
    Chen, Yang
    Tian, Haoyu
    Wu, Chengwei
    Wu, Ligang
    GUIDANCE NAVIGATION AND CONTROL, 2022, 02 (02)
  • [24] Multi-Agent Deep Reinforcement Learning for Trajectory Design and Power Allocation in Multi-UAV Networks
    Zhao, Nan
    Liu, Zehua
    Cheng, Yiqiang
    IEEE ACCESS, 2020, 8 : 139670 - 139679
  • [25] Multi-UAV trajectory planning using gradient -based sequence minimal optimization
    Xia, Qiaoyang
    Liu, Shuang
    Guo, Mingyang
    Wang, Hui
    Zhou, Qigao
    Zhang, Xiancheng
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 137
  • [26] Optimization Design of Multi-UAV Communication Network Based on Reinforcement Learning
    Cao, Zhengyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [27] Collision Detection and Avoidance for Multi-UAV based on Deep Reinforcement Learning
    Wang, Guanzheng
    Liu, Zhihong
    Xiao, Kun
    Xu, Yinbo
    Yang, Lingjie
    Wang, Xiangke
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7783 - 7789
  • [28] Multi-UAV Cooperative Target Assignment Method Based on Reinforcement Learning
    Ding, Yunlong
    Kuang, Minchi
    Shi, Heng
    Gao, Jiazhan
    DRONES, 2024, 8 (10)
  • [29] Reinforcement-Learning-Assisted Multi-UAV Task Allocation and Path Planning for IIoT
    Zhao, Guodong
    Wang, Ye
    Mu, Tong
    Meng, Zhijun
    Wang, Zichen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 26766 - 26777
  • [30] Trajectory Planning and Resource Allocation for Multi-UAV Cooperative Computation
    Xu, Wenlong
    Zhang, Tiankui
    Mu, Xidong
    Liu, Yuanwei
    Wang, Yapeng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4305 - 4318