Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN)

被引:3
|
作者
Kang, Xinyu [1 ]
Li, Yanlong [1 ]
Zhang, Ye [1 ]
Ma, Ning [2 ]
Wen, Lifeng [1 ]
机构
[1] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, Xian 710048, Shaanxi, Peoples R China
[2] Satate Power Investment Corp, Dam Safety Management Ctr, Xian 710061, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Concrete dam deformation; Anomaly detection; MemAE; GAN; Deep learning;
D O I
10.1016/j.autcon.2024.105794
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Anomaly detection of concrete dam from deformation monitoring data is significant for dam safety evaluation. Existing anomaly detection models face challenges in identifying minor abnormal values and detection accuracy. This paper integrates the memory-augmented deep autoencoder (MemAE) with the generative adversarial network (GAN) to construct the unsupervised MemAE-GAN model, which leverages MemAE's precision in modeling and the GAN's adversarial training capability to highlight minor abnormal values, thereby significantly enhancing both sensitivity and accuracy in anomaly detection. Experimental results indicate that the MemAE-GAN model consistently achieved anomaly detection accuracy exceeding 0.97, considerably outperforming other comparative models. This model provides a highly accurate approach for deformation anomaly detection and lays the groundwork for subsequent research on deformation prediction and early warning. Future research could explore the algorithms to analyze the causes of abnormal values and establish the anomaly detection framework.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Memory-Augmented Generative Adversarial Networks for Anomaly Detection
    Yang, Ziyi
    Zhang, Teng
    Bozchalooi, Iman Soltani
    Darve, Eric
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2324 - 2334
  • [2] Network Anomaly Detection Using Memory-Augmented Deep Autoencoder
    Min, Byeongjun
    Yoo, Jihoon
    Kim, Sangsoo
    Shin, Dongil
    Shin, Dongkyoo
    IEEE ACCESS, 2021, 9 : 104695 - 104706
  • [3] Anomaly Detection With Memory-Augmented Adversarial Autoencoder Networks for Industry 5.0
    Zhang, Huan
    Kumar, Neeraj
    Wu, Sheng
    Wu, Chunlei
    Wang, Jian
    Zhang, Peiying
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1952 - 1962
  • [4] MEMORY-AUGMENTED ANOMALY GENERATIVE ADVERSARIAL NETWORK FOR RETINAL OCT IMAGES SCREENING
    Zhang, Chengfen
    Wang, Yue
    Zhao, Xinyu
    Guo, Yan
    Xie, Guotong
    Lv, Chuanfeng
    Lv, Bin
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1971 - 1974
  • [5] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Wang, Tian
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (07) : 1296 - 1307
  • [6] Research on Video Anomaly Detection Based on Cascaded Memory-augmented Autoencoder
    Zhang, Lin
    Chen, Zhao-Bo
    Ma, Xiao-Xuan
    Zhang, Fan-Bo
    Li, Ze-Hui
    Shan, Xian-Ying
    Journal of Computers (Taiwan), 2023, 34 (05) : 229 - 241
  • [7] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Tian Wang
    Xing Xu
    Fumin Shen
    Yang Yang
    IEEE/CAAJournalofAutomaticaSinica, 2021, 8 (07) : 1296 - 1307
  • [8] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
    Gong, Dong
    Liu, Lingqiao
    Le, Vuong
    Saha, Budhaditya
    Mansour, Moussa Reda
    Venkatesh, Svetha
    van den Hengel, Anton
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714
  • [9] Memory-Augmented Autoencoder With Adaptive Reconstruction and Sample Attribution Mining for Hyperspectral Anomaly Detection
    Huo, Yu
    Cheng, Xi
    Lin, Sheng
    Zhang, Min
    Wang, Hai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [10] Memory-augmented appearance-motion network for video anomaly detection
    Wang, Le
    Tian, Junwen
    Zhou, Sanping
    Shi, Haoyue
    Hua, Gang
    PATTERN RECOGNITION, 2023, 138