FedASA: A Personalized Federated Learning With Adaptive Model Aggregation for Heterogeneous Mobile Edge Computing

被引:2
|
作者
Deng, Dongshang [1 ,2 ]
Wu, Xuangou [1 ,2 ]
Zhang, Tao [3 ,4 ]
Tang, Xiangyun [5 ]
Du, Hongyang [6 ]
Kang, Jiawen [7 ]
Liu, Jiqiang [8 ]
Niyato, Dusit [9 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243002, Peoples R China
[2] Anhui Prov Key Lab Digital Twin Technol Met Ind, Maanshan 243002, Peoples R China
[3] Beijing Jiaotong Univ, Sch Cyberspace Sci & Technol, Beijing 100044, Peoples R China
[4] Anhui Engn Res Ctr Intelligent Applicat & Secur In, Beijing 100044, Peoples R China
[5] Minzu Univ China, Sch Informat Engn, Beijing 100081, Peoples R China
[6] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[7] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[8] Beijing Jiaotong Univ, Sch Cyberspace Sci & Technol, Beijing 100044, Peoples R China
[9] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore 639798, Singapore
基金
中国博士后科学基金; 新加坡国家研究基金会;
关键词
Computational modeling; Performance evaluation; Adaptation models; Accuracy; Servers; Internet of Things; Computer architecture; mobile edge computing; personalized federated learning; resource constraint; statistical heterogeneity;
D O I
10.1109/TMC.2024.3446271
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) opens a new promising paradigm for the Industrial Internet of Things (IoT) since it can collaboratively train machine learning models without sharing private data. However, deploying FL frameworks in real IoT scenarios faces three critical challenges, i.e., statistical heterogeneity, resource constraint, and fairness. To address these challenges, we design a fair and efficient FL method, termed FedASA, which can address the challenge of statistical heterogeneity in resource-constrained scenarios by determining the shared architecture adaptively. In FedASA, we first present a cell-wised shared architecture selection strategy, which can adaptively construct the shared architecture for each device. We then design a cell-based aggregation algorithm for aggregating heterogeneous shared architectures. In addition, we provide a theoretical analysis of the federated error bound, which provides a theoretical guarantee for the fairness. At the same time, we prove the convergence of FedASA at the first-order stationary point. We evaluate the performance of FedASA through extensive simulation and experiments. Experimental results in cross-location scenarios show that FedASA outperformed the state-of-the-art approaches, improving accuracy by up to 13.27% with better fairness and faster convergence and communication requirement has been reduced by 81.49%.
引用
收藏
页码:14787 / 14802
页数:16
相关论文
共 50 条
  • [31] Worker-Centric Model Allocation for Federated Learning in Mobile Edge Computing
    Huang, Huawei
    Yang, Yang
    Jiang, Zigui
    Zheng, Zibin
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (02): : 869 - 880
  • [32] Energy-Efficient Client Sampling for Federated Learning in Heterogeneous Mobile Edge Computing Networks
    Tang, Jian
    Li, Xiuhua
    Li, Hui
    Xiong, Min
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 956 - 961
  • [33] Decentralized Navigation With Heterogeneous Federated Reinforcement Learning for UAV-Enabled Mobile Edge Computing
    Wang, Pengfei
    Yang, Hao
    Han, Guangjie
    Yu, Ruiyun
    Yang, Leyou
    Sun, Geng
    Qi, Heng
    Wei, Xiaopeng
    Zhang, Qiang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13621 - 13638
  • [34] Privacy Preservation for Federated Learning With Robust Aggregation in Edge Computing
    Liu, Wentao
    Xu, Xiaolong
    Li, Dejuan
    Qi, Lianyong
    Dai, Fei
    Dou, Wanchun
    Ni, Qiang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 7343 - 7355
  • [35] On-the-fly Resource-Aware Model Aggregation for Federated Learning in Heterogeneous Edge
    Nguyen, Hung T.
    Morabito, Roberto
    Kim, Kwang Taik
    Chiang, Mung
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [36] NestFL: Efficient Federated Learning through Progressive Model Pruning in Heterogeneous Edge Computing
    Zhou, Xiaomao
    Jia, Qingmin
    Xie, Renchao
    PROCEEDINGS OF THE 2022 THE 28TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, ACM MOBICOM 2022, 2022, : 817 - 819
  • [37] Peaches: Personalized Federated Learning With Neural Architecture Search in Edge Computing
    Yan, Jiaming
    Liu, Jianchun
    Xu, Hongli
    Wang, Zhiyuan
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10296 - 10312
  • [38] Personalized federated learning for heterogeneous data: A distributed edge clustering approach
    Firdaus, Muhammad
    Noh, Siwan
    Qian, Zhuohao
    Larasati, Harashta Tatimma
    Rhee, Kyung-Hyune
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10725 - 10740
  • [39] Like Attracts Like: Personalized Federated Learning in Decentralized Edge Computing
    Ma, Zhenguo
    Xu, Yang
    Xu, Hongli
    Liu, Jianchun
    Xue, Yinxing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (02) : 1080 - 1096
  • [40] Federated Learning Assisted Intelligent IoV Mobile Edge Computing
    Quan, Haoyu
    Zhang, Qingmiao
    Zhao, Junhui
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2025, 9 (01): : 228 - 241