Maestro: LLM-Driven Collaborative Automation of Intent-Based 6G Networks

被引:0
|
作者
Chatzistefanidis, Ilias [1 ]
Leone, Andrea [1 ]
Nikaein, Navid [1 ]
机构
[1] EURECOM, Communications Department, Sophia Antipolis,06904, France
来源
IEEE Networking Letters | 2024年 / 6卷 / 04期
关键词
5G mobile communication systems - Queueing networks;
D O I
10.1109/LNET.2024.3503292
中图分类号
学科分类号
摘要
This letter presents Maestro, a collaborative framework leveraging Large Language Models (LLMs) for automation of shared networks. Maestro enables conflict resolution and collaboration among stakeholders in a shared intent-based 6G network by abstracting diverse network infrastructures into declarative intents across business, service, and network planes. LLM-based agents negotiate resources, mediated by Maestro to achieve consensus that aligns multi-party business and network goals. Evaluation on a 5G Open RAN testbed reveals that integrating LLMs with optimization tools and contextual units builds autonomous agents with comparable accuracy to the state-of-the-art algorithms while being flexible to spatio-temporal business and network variability. © 2019 IEEE.
引用
收藏
页码:227 / 231
相关论文
共 50 条
  • [21] Toward Intelligent and Adaptive Task Scheduling for 6G: An Intent-Driven Framework
    Wang, Qingqing
    Zou, Sai
    Sun, Yanglong
    Liwang, Minghui
    Wang, Xianbin
    Ni, Wei
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (05) : 1975 - 1988
  • [22] SliceOps: Explainable MLOps for Streamlined Automation-Native 6G Networks
    Rezazadeh, Farhad
    Chergui, Hatim
    Alonso, Luis
    Verikoukis, Christos
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (05) : 224 - 230
  • [23] Network Slice Lifecycle Management for 5G Mobile Networks: An Intent-Based Networking Approach
    Abbas, Khizar
    Khan, Talha Ahmed
    Afaq, Muhammad
    Song, Wang-Cheol
    IEEE ACCESS, 2021, 9 (09): : 80128 - 80146
  • [24] 6G IoV Networks Driven by RF Digital Twin Modeling
    Liu, Zengcan
    Sun, Houjun
    Marine, Gintare
    Wu, Hulin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2976 - 2986
  • [25] Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G
    Huang, Xiaoyan
    Zhang, Ke
    Wu, Fan
    Leng, Supeng
    IEEE NETWORK, 2021, 35 (06): : 12 - 19
  • [26] Improving Scalability of 6G Network Automation with Distributed Deep Q-Networks
    Majumdar, Sayantini
    Goratti, Leonardo
    Trivisonno, Riccardo
    Carle, Georg
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1265 - 1270
  • [27] Zero Touch Management: A Survey of Network Automation Solutions for 5G and 6G Networks
    Coronado, Estefania
    Behravesh, Rasoul
    Subramanya, Tejas
    Fernandez-Fernandez, Adriana
    Siddiqui, Muhammad Shuaib
    Costa-Perez, Xavier
    Riggio, Roberto
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (04): : 2535 - 2578
  • [28] Intent-Driven Closed-Loop Control and Management Framework for 6G Open RAN
    Zhang, Jingwen
    Yang, Chungang
    Dong, Ru
    Wang, Yao
    Anpalagan, Alagan
    Ni, Qiang
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6314 - 6327
  • [29] UAV-Based Collaborative Electronic Reconnaissance Network for 6G
    Yang, Fucheng
    Song, Jie
    Xiong, Wei
    Cui, Xutao
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [30] A Self-driven Virtual Elastic Infrastructure For Cell-free Based 6G Networks
    Vardakas, John S.
    Soumplis, Polyzois
    Kokkinos, Panagiotis
    Pryor, Simon
    Chanclou, Philippe
    Varvarigos, Emmanouel
    Ramantas, Kostas
    Verikoukis, Christos
    IEEE WIRELESS COMMUNICATIONS, 2025, 32 (02) : 188 - 195