Higher-order gap ratios of singular values in open quantum systems

被引:1
|
作者
Tekur, S. Harshini [1 ]
Santhanam, M. S. [1 ]
Agarwalla, Bijay Kumar [1 ]
Kulkarni, Manas [2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Pune 411008, India
[2] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560089, India
关键词
RANDOM-MATRIX THEORY; STATISTICAL-THEORY; ENERGY-LEVELS; ENSEMBLES; UNIVERSALITY; REPULSION;
D O I
10.1103/PhysRevB.110.L241410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding open quantum systems using information encoded in its complex eigenvalues has been a subject of growing interest. In this Letter, we study higher-order gap ratios of the singular values of generic open quantum systems. We show that the k th-order gap ratio of the singular values of an open quantum system can be connected to the nearest-neighbor spacing ratio of positions of classical particles of a harmonically confined log gas with inverse temperature beta ' ( k ), where beta ' ( k ) is an analytical function that depends on k and the Dyson's index beta = 1, 2, and 4 that characterizes the properties of the associated Hermitized matrix. Our findings are crucial not only for understanding long-range correlations between the eigenvalues but also provide an excellent way of distinguishing different symmetry classes in an open quantum system. To highlight the universality of our findings, we demonstrate the higher-order gap ratios using different platforms such as non-Hermitian random matrices, random dissipative Liouvillians, Hamiltonians coupled to a Markovian bath, and Hamiltonians with built-in non-Hermiticity.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Superintegrability and higher-order constants for classical and quantum systems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2011, 74 : 914 - 918
  • [12] Superintegrability and Higher-Order Constants for Classical and Quantum Systems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 914 - 918
  • [13] Isochronicity Problem of Higher-Order Singular Point for Polynomial Differential Systems
    Yusen Wu
    Cui Zhang
    Peiluan Li
    Acta Applicandae Mathematicae, 2010, 110 : 1429 - 1448
  • [14] Singular solutions of higher-order non-linear elliptic systems
    Kalita, EA
    SBORNIK MATHEMATICS, 2004, 195 (11-12) : 1607 - 1638
  • [15] ORTHOGONAL POLYNOMIALS AND HIGHER-ORDER SINGULAR STURM-LIOUVILLE SYSTEMS
    LITTLEJOHN, LL
    KRALL, AM
    ACTA APPLICANDAE MATHEMATICAE, 1989, 17 (02) : 99 - 170
  • [16] Generalization of the Hamilton-Jacobi approach for higher-order singular systems
    Pimentel, BM
    Teixeira, RG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (06): : 805 - 817
  • [17] Isochronicity Problem of Higher-Order Singular Point for Polynomial Differential Systems
    Wu, Yusen
    Zhang, Cui
    Li, Peiluan
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1429 - 1448
  • [18] On higher-order quantum stress
    Shaofan Li
    Qi Tong
    Acta Mechanica, 2014, 225 : 1235 - 1243
  • [19] On higher-order quantum stress
    Li, Shaofan
    Tong, Qi
    ACTA MECHANICA, 2014, 225 (4-5) : 1235 - 1243
  • [20] Semantic values in higher-order semantics
    Kraemer, Stephan
    PHILOSOPHICAL STUDIES, 2014, 168 (03) : 709 - 724