Quantifying interstellar extinction at high Galactic latitudes

被引:0
|
作者
O'Callaghan, Matthew [1 ]
Gilmore, Gerry [1 ,2 ]
Mandel, Kaisey S. [1 ,3 ,4 ]
机构
[1] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[2] FORTH, Inst Astrophys, GR-70013 Iraklion, Greece
[3] Univ Cambridge, Stat Lab, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] Alan Turing Inst, Euston Rd, London NW1 2DB, England
基金
欧盟地平线“2020”;
关键词
dust; extinction; cosmic background radiation; INFRARED-SURVEY-EXPLORER; PAN-STARRS; STELLAR PARAMETERS; BAYESIAN-INFERENCE; B-MODES; DUST; GAIA; MAPS; ISOCHRONES; EMISSION;
D O I
10.1093/mnras/stae2397
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A detailed map of the distribution of dust at high Galactic latitudes is essential for future cosmic microwave background polarization experiments because the dust, while diffuse, remains a significant foreground in these regions. We develop a Bayesian model to identify a region of the Hertzsprung-Russell (HR) diagram suited to constrain the single-star extinction accurately at high Galactic latitudes. Using photometry from Gaia, 2MASS (Two Micron All-Sky Survey), and AllWISE, and parallax from Gaia, we employ nested sampling to fit the model to the data and analyse the posterior over stellar parameters for both synthetic and real data. Charting low variations in extinction is complex due to systematic errors and degeneracies between extinction and other stellar parameters. The systematic errors can be minimized by restricting our data to a region of the HR diagram where the stellar models are most accurate. Moreover, the degeneracies can be reduced by including astrophysical priors and spectroscopic constraints. We show that accounting for the measurement error of the data and the assumed inaccuracies of the stellar models are critical in accurately recovering small variations in extinction. We compare the posterior distribution for individual stars with spectroscopic stellar parameter estimates from the LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) and Gaia ESO and illustrate the importance of estimating extinction and effective temperature as a joint solution.
引用
收藏
页码:2149 / 2172
页数:24
相关论文
共 50 条
  • [21] A Synthetic Map of the Galactic Interstellar Extinction
    Oleg Malkov
    Elena Kilpio
    Astrophysics and Space Science, 2002, 280 : 115 - 118
  • [22] The Near-infrared Extinction Law at High and Low Galactic Latitudes
    Butler, Robert E.
    Salim, Samir
    ASTROPHYSICAL JOURNAL, 2024, 963 (01):
  • [23] Interstellar extinction towards the inner Galactic Bulge
    Schultheis, M
    Ganesh, S
    Simon, G
    Omont, A
    Alard, C
    Borsenberger, J
    Copet, E
    Epchtein, N
    Fouqué, P
    Habing, H
    ASTRONOMY & ASTROPHYSICS, 1999, 349 (03) : L69 - L72
  • [24] Determining the interstellar extinction and distances for Galactic novae
    Burlak, M. A.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2008, 34 (04): : 249 - 255
  • [25] Determining the interstellar extinction and distances for Galactic novae
    M. A. Burlak
    Astronomy Letters, 2008, 34 : 249 - 255
  • [26] Interstellar polarization at high galactic latitudes from distant stars - V. First results for the South Galactic Pole
    Berdyugin, A
    Teerikorpi, P
    ASTRONOMY & ASTROPHYSICS, 2001, 368 (02): : 635 - 638
  • [27] Modelling the Galactic interstellar extinction distribution in three dimensions
    Marshall, DJ
    Robin, AC
    Reylé, C
    Schultheis, M
    Picaud, S
    ASTRONOMY & ASTROPHYSICS, 2006, 453 (02) : 635 - 651
  • [28] Interstellar extinction and the luminosity function of Galactic center stars
    Sellgren, K
    Blum, RD
    DePoy, DL
    GALACTIC CENTER: 4TH ESO/CTIO WORKSHOP, 1996, 102 : 285 - 288
  • [29] Interstellar extinction towards open clusters and Galactic structure
    Joshi, YC
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 362 (04) : 1259 - 1266
  • [30] Interstellar Extinction in Galactic Cirri in SDSS Stripe 82
    G. A. Gontcharov
    A. V. Mosenkov
    S. S. Savchenko
    V. B. Il’in
    A. A. Marchuk
    A. A. Smirnov
    P. A. Usachev
    D. M. Polyakov
    Z. Shakespear
    Astronomy Letters, 2022, 48 : 503 - 516