A clustering algorithm for detecting differential deviations in the multivariate time-series IoT data based on sensor relationship

被引:0
|
作者
Idrees, Rabbia [1 ]
Maiti, Ananda [2 ]
Garg, Saurabh [1 ]
机构
[1] Univ Tasmania, Sch Informat & Commun Technol, Sandy Bay, Tas 7005, Australia
[2] Deakin Univ, Sch Informat Technol, Geelong, Vic 3216, Australia
关键词
Multivariate time series; Deviations; Outlier detection; Clustering; Sensor relationship; Anomaly detection;
D O I
10.1007/s10115-024-02303-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Internet-of-things (IoT) applications involve a large number of sensors reporting data as a set of time series. Often these data are related to each other based on the relationship of the sensors in the actual application. Any small deviations could indicate a change in the operation of the IoT system and potential problems with the IoT application's goals. It is often difficult to detect such deviations with respect to the relationship between the sensors. This paper presents the clustering algorithm that can efficiently detect all the deviations small or large in the complex and evolving IoT data streams with the help of sensor relationships. We have demonstrated with the help of experiments that our algorithm can efficiently handle high-dimensional data and accurately detect all the deviations. In this paper, we have presented two more algorithms, anomaly detection and outlier detection, that can efficiently categorize the deviations detected by our proposed clustering algorithm into anomalous or normal deviations. We have evaluated the performance and accuracy of our proposed algorithms on synthetic and real-world datasets. Furthermore, to check the effectiveness of our algorithms in terms of efficiency, we have prepared synthetic datasets in which we have increased the complexity of the deviations to show that our algorithm can handle complex IoT data streams efficiently.
引用
收藏
页码:2641 / 2690
页数:50
相关论文
共 50 条
  • [31] Time-series data dynamic density clustering
    Chen, Hao
    Xia, Yu
    Pan, Yuekai
    Yang, Qing
    INTELLIGENT DATA ANALYSIS, 2021, 25 (06) : 1487 - 1506
  • [32] Hierarchical clustering of time-series data streams
    Rodrigues, Pedro Pereira
    Gama, Joao
    Pedroso, Joao Pedro
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (05) : 615 - 627
  • [33] Location Time-series Clustering on Optimal Sensor Arrangement
    Yang, Zong-Hua
    Kao, Hung-Yu
    2012 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2012, : 113 - 118
  • [34] Clustering Algorithm Based on Time Series Similarity to Web Data Clustering
    Yang Yan
    Yao Hua-Xiong
    Li Rong
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 1373 - 1377
  • [35] Detecting Adversarial Attacks in IoT-Enabled Predictive Maintenance with Time-Series Data Augmentation
    Amato, Flora
    Cirillo, Egidia
    Fonisto, Mattia
    Moccardi, Alberto
    INFORMATION, 2024, 15 (11)
  • [36] Soft Subspace Based Ensemble Clustering for Multivariate Time Series Data
    He, Guoliang
    Jiang, Wenjun
    Peng, Rong
    Yin, Ming
    Han, Min
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7761 - 7774
  • [37] VAR Model Based Clustering Method for Multivariate Time Series Data
    Deb S.
    Journal of Mathematical Sciences, 2019, 237 (6) : 754 - 765
  • [38] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    Applied Soft Computing, 2021, 100
  • [39] A novel pattern based clustering methodology for time-series microarray data
    Phan, Sieu
    Famili, Fazel
    Tang, Zoujian
    Pan, Youlian
    Liu, Ziying
    Ouyang, Junjun
    Lenferink, Anne
    O'Connor, Maureen Mc-Court
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (05) : 585 - 597
  • [40] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    APPLIED SOFT COMPUTING, 2021, 100