gatekeeper : Online Safety Verification and Control for Nonlinear Systems in Dynamic Environments

被引:0
|
作者
Agrawal, Devansh Ramgopal [1 ]
Chen, Ruichang [2 ]
Panagou, Dimitra [1 ,3 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Trajectory; Safety; Robots; Logic gates; Robot sensing systems; Nonlinear dynamical systems; Quadrotors; Aerial systems; applications; collision avoidance; motion and path planning; safety-critical control;
D O I
10.1109/TRO.2024.3454415
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article presents the gatekeeper algorithm, a real-time and computationally lightweight method that ensures that trajectories of a nonlinear system satisfy safety constraints despite sensing limitations. gatekeeper integrates with existing path planners and feedback controllers by introducing an additional verification step to ensure that proposed trajectories can be executed safely, despite nonlinear dynamics subject to bounded disturbances, input constraints, and partial knowledge of the environment. Our key contribution is that 1) we propose an algorithm to recursively construct safe trajectories by numerically forward propagating the system over a (short) finite horizon, and 2) we prove that tracking such a trajectory ensures the system remains safe for all future time, i.e., beyond the finite horizon. We demonstrate the method in a simulation of a dynamic firefighting mission, and in physical experiments of a quadrotor navigating in an obstacle environment that is sensed online. We also provide comparisons against the state-of-the-art techniques for similar problems.
引用
收藏
页码:4358 / 4375
页数:18
相关论文
共 50 条
  • [11] Incremental Online Verification of Dynamic Cyber-Physical Systems
    Bu, Lei
    Xing, Shaopeng
    Ren, Xinyue
    Yang, Yang
    Wang, Qixin
    Li, Xuandong
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 782 - 787
  • [12] Safety Verification of Nonlinear Hybrid Systems Based on Bilinear Programming
    Zhang, Yifan
    Yang, Zhengfeng
    Lin, Wang
    Zhu, Huibiao
    Chen, Xin
    Li, Xuandong
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (11) : 2768 - 2778
  • [13] Safety Verification of Nonlinear Systems with Bayesian Neural Network Controllers
    Zeng, Xia
    Yang, Zhengfeng
    Zhang, Li
    Tang, Xiaochao
    Zeng, Zhenbing
    Liu, Zhiming
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15278 - 15286
  • [14] Safety Verification of Nonlinear Hybrid Systems Based on Invariant Clusters
    Kong, Hui
    Bogomolov, Sergiy
    Schilling, Christian
    Jiang, Yu
    Henzinger, Thomas A.
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS WEEK) (HSCC' 17), 2017, : 163 - 172
  • [15] Nonlinear control of robot spatial motion in dynamic environments
    Miroshnik, IV
    Huang, XL
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 165 - 169
  • [16] ON THE ONLINE CONTROL OF A CLASS OF NONLINEAR-SYSTEMS
    JIANG, JC
    KEXUE TONGBAO, 1986, 31 (02): : 139 - 141
  • [17] Online safety control of a class of hybrid systems
    Abdelwahed, S
    Karsai, G
    Biswas, G
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1988 - 1990
  • [18] DYNAMIC ANALYSIS OF NONLINEAR CONTROL SYSTEMS
    FREEMAN, EA
    COX, CS
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1967, 114 (01): : 129 - &
  • [19] Neural control for nonlinear dynamic systems
    Yu, SH
    Annaswamy, AM
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 8: PROCEEDINGS OF THE 1995 CONFERENCE, 1996, 8 : 1010 - 1016
  • [20] Dynamic Quantization of Nonlinear Control Systems
    Azuma, Shun-ichi
    Sugie, Toshiharu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) : 875 - 888