Automatic 3D horizon picking using a volumetric transformer-based segmentation network

被引:0
|
作者
Liao, Xiaofang [1 ,2 ]
Cao, Junxing [3 ]
Tan, Feng [4 ]
You, Jachun [3 ]
机构
[1] Xihua Univ, Sch Aeronaut & Astronaut, Chengdu 610039, Peoples R China
[2] Xihua Univ, Engn Res Ctr Intelligent Air ground Integrated Veh, Chengdu 610039, Peoples R China
[3] Chengdu Univ Technol, Coll Geophys, Chengdu 610059, Peoples R China
[4] China Natl Petr Corp, Res & Dev Ctr, Bur Geophys Prospecting, Zhuozhou 072751, Peoples R China
基金
中国国家自然科学基金;
关键词
Horizon picking; Seismic image segmentation; Volumetric Transformer; Transfer learning;
D O I
10.1016/j.jappgeo.2025.105673
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Seismic horizon picking is a critical step in seismic interpretation and is often labor-intensive and timeconsuming, particularly in three-dimensional (3D) volume interpretation. We formulated the task of automatically selecting horizon surfaces from 3D seismic data as a 3D seismic image segmentation problem and developed a method based on a volumetric transformer network. The network uses 3D seismic subvolumes as inputs and outputs the probabilities of several horizon classes. Horizon surfaces can be extracted using postprocessing segmentation probabilities. Because the full annotation of a 3D subvolume is tedious and time-consuming, we utilize a masked loss strategy that allows us to label a few two-dimensional (2D) slices per training subvolume such that the network can learn from partially labeled subvolumes and create dense volumetric segmentation. We also used data augmentation and transfer learning to improve the prediction accuracy with the limited availability of training data. For two public 3D seismic datasets, the proposed method yielded accurate results for 3D horizon picking, and the use of transfer learning improved the accuracy of the results.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] 3D Vision-Based Picking System with Instance Segmentation Network and Iterative Optimization Method
    Wang D.
    Yan Y.
    Zhou G.
    Li Y.
    Liu C.
    Lin L.
    Chen Q.
    Jiqiren/Robot, 2019, 41 (05): : 637 - 648
  • [32] 3D Volumetric CT Liver Segmentation Using Hybrid Segmentation Techniques
    Yussof, Wan Nural Jawahir Wan
    Burkhardt, Hans
    2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 404 - 408
  • [33] Supervoxel-Based Segmentation of 3D Volumetric Images
    Yang, Chengliang
    Sethi, Manu
    Rangarajan, Anand
    Ranka, Sanjay
    COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 : 37 - 53
  • [34] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)
  • [35] Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network
    Xiao, Chi
    Chen, Xi
    Li, Weifu
    Li, Linlin
    Wang, Lu
    Xie, Qiwei
    Han, Hua
    FRONTIERS IN NEUROANATOMY, 2018, 12
  • [36] Automatic Segmentation of 3D Ultrasound Spine Curvature Using Convolutional Neural Network
    Banerjee, Sunetra
    Ling, Sai Ho
    Lyu, Juan
    Su, Steven
    Zheng, Yong-Ping
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 2039 - 2042
  • [37] SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network
    Shi, Yunzhi
    Wu, Xinming
    Fomel, Sergey
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE113 - SE122
  • [38] U-shaped network based on Transformer for 3D point clouds semantic segmentation
    Zhang, Jiazhe
    Li, Xingwei
    Zhao, Xianfa
    Ge, Yizhi
    Zhang, Zheng
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 170 - 176
  • [39] TAGNet: A transformer-based axial guided network for bile duct segmentation
    Zhou, Guang-Quan
    Zhao, Fuxing
    Yang, Qing-Han
    Wang, Kai-Ni
    Li, Shengxiao
    Zhou, Shoujun
    Lu, Jian
    Chen, Yang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [40] Transformer-Based Cascade U-shaped Network for Action Segmentation
    Bao, Wenxia
    Lin, An
    Huang, Hua
    Yang, Xianjun
    Chen, Hemu
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 157 - 161