Achieving low-carbon development in the mining sector is fundamental for global carbon emissions abatement, especially considering the growing demand for mineral resources. Currently, the energy footprint of mines emerges as the main carbon contributor. While cleaner energy sources have the potential for reducing emissions, transitioning to these sources remains challenging. This study presents a practical CO2 mitigation strategy for underground mining by integrating bacteria into shotcrete to enhance excavation. The findings demonstrate that bacteria can capture CO2 from the atmosphere, thereby increasing the carbonation reactions. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis shows the captured CO2 present in the forms of calcite, vaterite, and aragonite. The formed carbonates intermingled with the precipitated calcium-silicate-hydrate (CS-H) at relatively low bacteria additions, densifying the cementitious matrix and improving the mechanical properties. However, high bacteria concentrations lead to excess carbonates that consume C-S-H precipitation, counteracting the benefits of carbonation and reducing mechanical strength. Optimal results were achieved with 0.3% bacteria by mass fraction, potentially mitigating 0.34 kg/m2 of CO2, which is approximately equivalent 567 g of CO2 absorbed by 1 g of bacteria based on the effectiveness demonstrated in this study. These findings are crucial for advancing emissions control in mining and supporting climate goals outlined in the Paris Agreement. (c) 2024 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).