Cu2O-based catalysts applied for electrocatalytic CO2 reduction: a review

被引:2
|
作者
Liu, Cong [1 ]
Guo, Rui-tang [1 ,2 ]
Zhu, Hao-wen [1 ]
Cui, Heng-fei [1 ]
Liu, Ming-yang [1 ]
Pan, Wei-guo [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy Source & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Noncarbon Energy Convers & Utilizat Inst, Shanghai 200090, Peoples R China
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTRICAL-CONDUCTIVITY; CU2O NANOCUBES; ELECTROREDUCTION; CONVERSION; SELECTIVITY; CHALLENGES; CLUSTERS; INSIGHTS;
D O I
10.1039/d4ta06287f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of sustainable energy-driven electrocatalytic carbon dioxide reduction reaction (CO2RR) technology enables the synthesis of valuable chemicals and feedstocks. This offers a promising pathway to effectively reduce greenhouse gas emissions associated with fossil fuels. Cu2O-based electrocatalysts have been widely investigated owing to their cost-effective, environmentally friendly, and structurally tunable nature. This article provides a comprehensive review of recent advancements in the electrocatalytic reduction of carbon dioxide using Cu2O-based catalysts with a focus on the properties, structure, and synthesis of Cu2O. It summarizes the performance of Cu2O-based catalysts in CO2 reduction, discusses several optimization strategies to enhance their stability and redox capabilities and outlines their application in CO2 reduction. Finally, the opportunities, challenges and research directions associated with Cu2O-based catalysts in the field of electrocatalytic CO2 reduction are identified, providing guidance for their broad application in the energy and environment sectors.
引用
收藏
页码:31769 / 31796
页数:28
相关论文
共 50 条
  • [21] Supramolecular Engineering to Improve Electrocatalytic CO2 Reduction Activity of Cu2O
    Zhang, Ya
    Zhang, Xiao-Yu
    Chen, Kai
    Sun, Wei-Yin
    CHEMSUSCHEM, 2021, 14 (08) : 1847 - 1852
  • [22] Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles
    Wenfei Zhang
    Qulan Zhou
    Ji Qi
    Na Li
    Reaction Kinetics, Mechanisms and Catalysis, 2021, 134 : 243 - 257
  • [23] Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles
    Zhang, Wenfei
    Zhou, Qulan
    Qi, Ji
    Li, Na
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 134 (01) : 243 - 257
  • [24] Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction
    Dongping Xue
    Huicong Xia
    Wenfu Yan
    Jianan Zhang
    Shichun Mu
    Nano-Micro Letters, 2021, 13 (01) : 62 - 84
  • [25] Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction
    Xue, Dongping
    Xia, Huicong
    Yan, Wenfu
    Zhang, Jianan
    Mu, Shichun
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [26] Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction
    Dongping Xue
    Huicong Xia
    Wenfu Yan
    Jianan Zhang
    Shichun Mu
    Nano-Micro Letters, 2021, 13
  • [27] Effect mechanism of NO on electrocatalytic reduction of CO2 to CO over Pd@Cu bimetal catalysts
    Xiong, Bo
    Liu, Jing
    Yang, Yingju
    Yang, Yuchen
    Hua, Zhixuan
    FUEL, 2022, 323
  • [28] Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products
    You, Shiya
    Xiao, Jiewen
    Liang, Shuyu
    Xie, Wenfu
    Zhang, Tianyu
    Li, Min
    Zhong, Ziyi
    Wang, Qiang
    He, Hong
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5795 - 5818
  • [29] Cu-based materials as co-catalysts for photocatalytic CO2 reduction: A mini review
    Jing, Ya-Nan
    Yin, Xing-Liang
    Li, Lei -Lei
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [30] Structure Sensitivity in the Electrocatalytic Reduction of CO2 with Gold Catalysts
    Mezzavilla, Stefano
    Horch, Sebastian
    Stephens, Ifan E. L.
    Seger, Brian
    Chorkendorff, Ib
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) : 3774 - 3778