Reliability-aware swarm based multi-objective optimization for controller placement in distributed SDN architecture

被引:1
|
作者
Ibrahim, Abeer A. Z. [1 ,2 ,3 ]
Hashim, Fazirulhisyam [1 ,2 ]
Sali, Aduwati [1 ,2 ]
Noordin, Nor K. [1 ,2 ]
Navaie, Keivan [4 ]
Fadul, Saber M. E. [5 ]
机构
[1] Univ Putra Malaysia, Fac Engn, Dept Comp & Commun Syst Engn, Serdang 43400, Malaysia
[2] Univ Putra Malaysia, Fac Engn, Wireless & Photon Networks Res Ctr WiPNet, Serdang 43400, Malaysia
[3] Coll Engn & Med Sci, Dept Commun & Comp Engn, Khartoum 11111, Sudan
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4YW, England
[5] Univ Putra Malaysia, Fac Engn, Dept Elect & Elect Engn, Serdang 43400, Malaysia
关键词
Software defined networking; Dynamic mapping; Particle swarm optimization; Reliability; Multi-objective optimization; Evolutionary; SOFTWARE; ASSIGNMENT; NETWORKS;
D O I
10.1016/j.dcan.2023.11.007
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The deployment of distributed multi-controllers for Software-Defined Networking (SDN) architecture is an emerging solution to improve network scalability and management. However, the network control failure affects the dynamic resource allocation in distributed networks resulting in network disruption and low resilience. Thus, we consider the control plane fault tolerance for cost-effective and accurate controller location models during control plane failures. This fault-tolerance strategy has been applied to distributed SDN control architecture, which allows each switch to migrate to next controller to enhance network performance. In this paper, the Reliable and Dynamic Mapping-based Controller Placement (RDMCP) problem in distributed architecture is framed as an optimization problem to improve the system reliability, quality, and availability. By considering the bound constraints, a heuristic state-of-the-art Controller Placement Problem (CPP) algorithm is used to address the optimal assignment and reassignment of switches to nearby controllers other than their regular controllers. The algorithm identifies the optimal controller location, minimum number of controllers, and the expected assignment costs after failure at the lowest effective cost. A metaheuristic Particle Swarm Optimization (PSO) algorithm was combined with RDMCP to form a hybrid approach that improves objective function optimization in terms of reliability and cost-effectiveness. The effectiveness of our hybrid RDMCP-PSO was then evaluated using extensive experiments and compared with other baseline algorithms. The findings demonstrate that the proposed hybrid technique significantly increases the network performance regarding the controller number and load balancing of the standalone heuristic CPP algorithm.
引用
收藏
页码:1245 / 1257
页数:13
相关论文
共 50 条
  • [41] Robust Design Optimization Based on Multi-Objective Particle Swarm Optimization
    Yu Yan
    Dai Guangming
    Chen Liang
    Zhou Chong
    Peng Lei
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4918 - 4925
  • [42] A Multi-Objective Routing Mechanism for Energy Management Optimization in SDN Multi-Control Architecture
    Ibrahim, Abeer A. Z.
    Hashim, Fazirulhisyam
    Sali, Aduwati
    Noordin, Nor K.
    Fadul, Saber M. E.
    IEEE ACCESS, 2022, 10 : 20312 - 20327
  • [43] A MULTI-OBJECTIVE LION SWARM OPTIMIZATION BASED ON MULTI-AGENT
    Wu, Zhongqiang
    Xie, Zongkui
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (02) : 1447 - 1458
  • [44] Multi-swarm multi-objective optimization based on a hybrid strategy
    Sedarous, Shery
    El-Gokhy, Sherin M.
    Sallam, Elsayed
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1619 - 1629
  • [45] Reliability-aware multi-objective approach for predictive asset management: A Danish distribution grid case study
    Mirshekali, Hamid
    Mortensen, Lasse Kappel
    Shaker, Hamid Reza
    APPLIED ENERGY, 2024, 358
  • [46] A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
    Liu, Ruochen
    Li, Jianxia
    Fan, Jing
    Mu, Caihong
    Jiao, Licheng
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 261 (03) : 1028 - 1051
  • [47] A Comprehensive Study of Particle Swarm Based Multi-objective Optimization
    Mohankrishna, Samantula
    Maheshwari, Divya
    Satyanarayana, P.
    Satapathy, Suresh Chandra
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 689 - +
  • [48] A Multi-Objective Particle Swarm Optimization Based on Grid Distance
    Leng, Rui
    Ouyang, Aijia
    Liu, Yanmin
    Yuan, Lian
    Wu, Zongyue
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (03)
  • [49] Multi-Objective Particle Swarm Optimization Based on Grid Ranking
    Li L.
    Wang W.
    Xu X.
    Li W.
    Wang, Wanliang (zjutwwl@zjut.edu.cn), 1600, Science Press (54): : 1012 - 1023
  • [50] Multi-objective optimization based on an adaptive competitive swarm optimizer
    Huang, Weimin
    Zhang, Wei
    INFORMATION SCIENCES, 2022, 583 : 266 - 287