Electrically defined quantum dots for bosonic excitons

被引:2
|
作者
Thureja, Deepankur [1 ,2 ]
Yazici, F. Emre [1 ]
Smolenski, Tomasz [1 ]
Kroner, Martin [1 ]
Norris, David J. [2 ]
Imamoglu, Atac [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Opt Mat Engn Lab, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
PHOTOLUMINESCENCE; SPECTROSCOPY;
D O I
10.1103/PhysRevB.110.245425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum dots are semiconductor nanostructures where particle motion is confined in all three spatial dimensions. Since their first experimental realization, nanocrystals confining the quanta of polarization waves, termed excitons, have found numerous applications in fields ranging from single photon sources for quantum information processing to commercial displays. A major limitation to further extending the range of potential applications has been the large inhomogeneity in, and lack-of tunability of, exciton energy that is generic to quantum dot materials. Here, we address this challenge by demonstrating electrically defined quantum dots for excitons in monolayer semiconductors where the discrete exciton energies can be tuned using applied gate voltages. Resonance fluorescence measurements show strong spectral jumps and blinking of these resonances, verifying their zero-dimensional nature. Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton-exciton interactions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Synthetic control of excitons in quantum dots
    Peng, Xiaogang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] A detailed theory of excitons in quantum dots
    Boero, M
    Rorison, JM
    Duggan, G
    Inkson, JC
    SURFACE SCIENCE, 1997, 377 (1-3) : 371 - 375
  • [23] Quantum control of spins and excitons in semiconductor quantum dots
    Piermarocchi, C
    Chen, P
    Sham, LJ
    Steel, DG
    ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 289 - 302
  • [24] Quantum Beat of Excitons in the Prolate Ellipsoidal Quantum Dots
    Bao, Le Thi Ngoc
    Phuoc, Duong Dinh
    Hien, Le Thi Dieu
    Thao, Dinh Nhu
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [25] Quantum Beat of Excitons in the Prolate Ellipsoidal Quantum Dots
    Bao, Le Thi Ngoc
    Phuoc, Duong Dinh
    Hien, Le Thi Dieu
    Thao, Dinh Nhu
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [26] Quantum beat of excitons in spherical semiconductor quantum dots
    Dinh Nhu Thao
    Le Thi Ngoc Bao
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 146
  • [27] Electrically isolated SiGe quantum dots
    Tevaarwerk, E
    Rugheimer, P
    Castellini, OM
    Keppel, DG
    Utley, ST
    Savage, DE
    Lagally, MG
    Eriksson, MA
    APPLIED PHYSICS LETTERS, 2002, 80 (24) : 4626 - 4628
  • [28] Binding energies of excitons and charged excitons in GaAs/Ga(In)As quantum dots
    Lelong, P
    Bastard, G
    SOLID STATE COMMUNICATIONS, 1996, 98 (09) : 819 - 823
  • [29] Excitons in the stacks of ZnSe/CdSe quantum dots
    Tchelidze, T
    Chikoidze, E
    Shmavonyan, G
    Kereselidze, T
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3 NO 3, 2006, 3 (03): : 540 - +
  • [30] Excitons and trions in spherical semiconductor quantum dots
    Kupchak, I. M.
    Kryuchenko, Yu. V.
    Korbutyak, D. V.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2006, 9 (01) : 1 - 8