FAIR Data Point:A FAIR-Oriented Approach for Metadata Publication

被引:0
|
作者
Luiz Olavo Bonino da Silva Santos [1 ,2 ]
Kees Burger [2 ]
Rajaram Kaliyaperumal [2 ]
Mark DWilkinson [3 ,4 ,5 ]
机构
[1] Services and Cybersecurity group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente-Enschede
[2] Biosemantics group, Department of Human Genetics, Leiden University Medical Center-Leiden
[3] Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas
[4] Centro de Biotecnología y Genómica de Plantas UPM–INIA
[5] Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
关键词
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
Metadata, data about other digital objects, play an important role in FAIR with a direct relation to all FAIR principles. In this paper we present and discuss the FAIR Data Point(FDP), a software architecture aiming to define a common approach to publish semantically-rich and machine-actionable metadata according to the FAIR principles. We present the core components and features of the FDP, its approach to metadata provision, the criteria to evaluate whether an application adheres to the FDP specifications and the service to register, index and allow users to search for metadata content of available FDPs.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 50 条
  • [41] Developing a virtual trade fair using an agent-oriented approach
    Inmaculada Remolar
    Alejandro Garcés
    Cristina Rebollo
    Miguel Chover
    Ricardo Quirós
    Jesús Gumbau
    Multimedia Tools and Applications, 2015, 74 : 4561 - 4582
  • [42] Developing a virtual trade fair using an agent-oriented approach
    Remolar, Inmaculada
    Garces, Alejandro
    Rebollo, Cristina
    Chover, Miguel
    Quiros, Ricardo
    Gumbau, Jesus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (13) : 4561 - 4582
  • [43] Be FAIR to your data
    Solle, Doerte
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (17) : 3961 - 3965
  • [44] Be FAIR to your data
    Dörte Solle
    Analytical and Bioanalytical Chemistry, 2020, 412 : 3961 - 3965
  • [45] FAIR your data
    Tang, Lin
    NATURE METHODS, 2020, 17 (02) : 127 - 127
  • [46] FAIR your data
    Lin Tang
    Nature Methods, 2020, 17 : 127 - 127
  • [47] A data-oriented approach to making new molecules as a student experiment: Artificial intelligence-enabling FAIR publication of NMR data for organic esters (vol 60, 93, 2022)
    Rzepa, Henry S.
    Kuhn, Stefan
    MAGNETIC RESONANCE IN CHEMISTRY, 2022, 60 (11) : 1032 - 1043
  • [48] FAIR Data Train: A FAIR-Compliant Distributed Data and Services Platform
    Bonino da Silva Santos, Luiz Olavo
    ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2024, 2024, 14663 : 637 - 638
  • [49] Advancing FAIR Agricultural Data: The AgReFed FAIR Assessment Tool
    Bahlo C.
    Data Science Journal, 2024, 23 (01)
  • [50] Fair arbitration in point-to-point networks
    Avresky, DR
    Shurbanov, V
    Horst, R
    31ST ANNUAL SIMULATION SYMPOSIUM, PROCEEDINGS, 1998, : 50 - 57