Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing

被引:0
|
作者
Anal Paul
Santi P.Maity
机构
[1] DepartmentofInformationTechnology,IndianInstituteofEngineeringScienceandTechnology
关键词
D O I
暂无
中图分类号
TN92 [无线通信]; TP311.13 [];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ; 1201 ;
摘要
Cooperation in spectral sensing(SS) offers a fast and reliable detection of primary user(PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center(FC) has to handle a large set of data, a cluster based approach, specifically fuzzy c-means clustering(FCM), has been extensively used in energy detection based cooperative spectrum sensing(CSS). However, the performance of FCM degrades at low signal-to-noise ratios(SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means(KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [11] Fuzzy C-Means Clustering based Secure Fusion Strategy in Collaborative Spectrum Sensing
    Li, Lei
    Chigan, Chunxiao
    2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2014, : 1355 - 1360
  • [12] Indefinite Kernel Fuzzy c-Means Clustering Algorithms
    Kanzawa, Yuchi
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 116 - 128
  • [13] A Kernel Fuzzy C-means Clustering Algorithm Based on Firefly Algorithm
    Cheng, Chunying
    Bao, Chunhua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 463 - 468
  • [14] Kernel Based Fuzzy C-Means Clustering for Chronic Sinusitis Classification
    Putri, Rezki Aulia
    Rustam, Zuherman
    Pandelaki, Jacub
    9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [15] TSK Fuzzy Model Using Kernel-Based Fuzzy C-Means Clustering
    Cai, Qianfeng
    Liu, Wei
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 308 - 312
  • [16] Multiscale edge detection based on fuzzy c-means clustering
    Zhai, Yishu
    Liu, Xiaoming
    ISSCAA 2006: 1ST INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1AND 2, 2006, : 1201 - +
  • [17] An Outlier Detection Method based on Fuzzy C-Means Clustering
    Li, Qiang
    Zhang, Jianpei
    Feng, Guangsheng
    ADVANCED DESIGN AND MANUFACTURE II, 2010, 419-420 : 165 - 168
  • [18] Kernel Functions Derived from Fuzzy Clustering and Their Application to Kernel Fuzzy c-Means
    Hwang, Jeongsik
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (01) : 90 - 94
  • [19] Technique for Kernel Matching Pursuit Based on Intuitionistic Fuzzy c-Means Clustering
    Lei, Yang
    Zhang, Minqing
    ELECTRONICS, 2024, 13 (14)
  • [20] A Theorem for Improving Kernel Based Fuzzy c-Means Clustering Algorithm Convergence
    Abu, Mohd Syafarudy
    Aik, Lim Eng
    Arbin, Norazman
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660