Statistical classification based on observations of random Gaussian fields

被引:0
|
作者
Šaltyte, J. [1 ]
Dučinskas, K. [1 ]
机构
[1] Department of System Research, Klaipeda University, H. Manto 84, Klaipeda Lt-5808, Lithuania
来源
Mathematical Modelling and Analysis | 1999年 / 4卷 / 01期
关键词
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The problem of classification of objects located in domain D ⊂ R2 based on observations of random Gaussian fields with a factorized covariance function is considered. The first-order asymptotic expansion for the expected error regret is presented. Obtained numerical results allow us to compare suggested expansion for some widely applicable models of spatial covariance function. © 1999 Technika.
引用
收藏
页码:153 / 162
相关论文
共 50 条
  • [31] HMM-Based Dynamic Mapping with Gaussian Random Fields
    Li, Hongjun
    Barao, Miguel
    Rato, Luis
    Wen, Shengjun
    ELECTRONICS, 2022, 11 (05)
  • [32] Background Extraction Based on Joint Gaussian Conditional Random Fields
    Wang, Hong-Cyuan
    Lai, Yu-Chi
    Cheng, Wen-Huang
    Cheng, Chin-Yun
    Hua, Kai-Lung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3127 - 3140
  • [33] THE STATISTICAL SIMULATION OF RANDOM FIELDS WITH THE GAUSSIAN TYPE CORRELATION FUNCTION BY THE INVESTIGATION OF THE MAGNETOMETRY DATA
    Vyzhva, Zoia
    Demidov, Vsevolod
    Vyzhva, Andrii
    VISNYK OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV-GEOLOGY, 2023, (03): : 81 - 87
  • [34] Statistical Modeling of Right-Censored Spatial Data Using Gaussian Random Fields
    Abdeen, Fathima Z. Sainul
    Adekpedjou, Akim
    Dabo Niang, Sophie
    MATHEMATICS, 2024, 12 (10)
  • [35] Streaming Gaussian Dirichlet Random Fields for Spatial Predictions of High Dimensional Categorical Observations
    San Soucie, John E.
    Sosik, Heidi M.
    Girdhar, Yogesh
    EXPERIMENTAL ROBOTICS, ISER 2023, 2024, 30 : 229 - 238
  • [36] Gaussian-Dirichlet Random Fields for Inference over High Dimensional Categorical Observations
    San Soucie, John E.
    Sosik, Heidi M.
    Girdhar, Yogesh
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 2924 - 2931
  • [37] Classification of Hyperspectral Images Based on Conditional Random Fields
    Hu, Yang
    Saber, Eli
    Monteiro, Sildomar T.
    Cahill, Nathan D.
    Messinger, David
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [38] A NONPARAMETRIC CONTEXTUAL CLASSIFICATION BASED ON MARKOV RANDOM FIELDS
    Kuo, Bor-Chen
    Chuang, Chun-Hsiang
    Huang, Chih-Sheng
    Hung, Chih-Cheng
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 135 - +
  • [39] COMBINING GAUSSIAN MARKOV RANDOM FIELDS WITH THE DISCRETE WAVELET TRANSFORM FOR ENDOSCOPIC IMAGE CLASSIFICATION
    Haefner, M.
    Gangl, A.
    Liedlgruber, M.
    Uhl, A.
    Vecsei, A.
    Wrba, E.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 177 - +
  • [40] ASYMPTOTIC PROPERTIES OF GAUSSIAN RANDOM FIELDS
    QUALLS, C
    WATANABE, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 177 (MAR) : 155 - 171