Cyclic Phases at an n-Fold Degeneracy

被引:0
|
作者
Manolopoulos, David E. [1 ]
Child, Mark S. [1 ]
机构
[1] Phys. and Theor. Chem. Laboratory, South Parks Road, Oxford OXI 3QZ, United Kingdom
来源
Physical Review Letters | 1999年 / 82卷 / 2-11期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2223 / 2227
相关论文
共 50 条
  • [41] n-fold Weibull multiplicative model
    Jiang, R
    Murthy, DNP
    Ji, P
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2001, 74 (02) : 211 - 219
  • [42] Planar coincidences for N-fold symmetry
    Pleasants, PAB
    Baake, M
    Roth, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 1029 - 1058
  • [43] On the n-fold hyperspace suspension of continua
    Macías, S
    TOPOLOGY AND ITS APPLICATIONS, 2004, 138 (1-3) : 125 - 138
  • [44] Induced maps on n-fold hyperspaces
    López, Maria De J.
    Macías, Sergio
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1047 - 1057
  • [45] N-fold sums of cantor sets
    Hare, KE
    O'Neil, TC
    MATHEMATIKA, 2000, 47 (93-94) : 243 - 250
  • [46] n-Fold integer programming in cubic time
    Hemmecke, Raymond
    Onn, Shmuel
    Romanchuk, Lyubov
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 325 - 341
  • [47] Some recursions for moments of n-fold convolutions
    Sundt, B
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (03): : 479 - 486
  • [48] General forms of a N-fold supersymmetric family
    Aoyama, H
    Sato, M
    Tanaka, T
    PHYSICS LETTERS B, 2001, 503 (3-4) : 423 - 429
  • [49] Scheduling meets n-fold integer programming
    Dušan Knop
    Martin Koutecký
    Journal of Scheduling, 2018, 21 : 493 - 503
  • [50] Evaluating and Tuning n-fold Integer Programming
    Altmanová K.
    Knop D.
    Koutecký M.
    ACM Journal of Experimental Algorithmics, 2019, 24 (01):