Minkowski decomposition of convex polygons into their symmetric and asymmetric parts

被引:0
|
作者
Acad of Sciences of Republic Belarus, Minsk, Belarus [1 ]
机构
来源
Pattern Recognit Lett | / 3-4卷 / 247-254期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Cones based on reflection symmetric convex polygons: Remarks on a problem by A. Pleijel
    Belloni, Marino
    Horstmann, Dirk
    Kawohl, Bernd
    FORUM MATHEMATICUM, 2007, 19 (05) : 933 - 953
  • [32] Robust Decomposition of a Digital Curve into Convex and Concave Parts
    Roussillon, Tristan
    Tougne, Laure
    Sivignon, Isabelle
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1622 - +
  • [33] Computing the Minkowski sum of monotone polygons
    HernandezBarrera, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (02) : 218 - 222
  • [34] CLASS OF CONVEX POLYGONS
    STRAUSS, FB
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06): : 496 - 496
  • [35] ON THE UNIMODALITY OF CONVEX POLYGONS
    OLARIU, S
    INFORMATION PROCESSING LETTERS, 1988, 29 (06) : 289 - 292
  • [36] POLARS OF CONVEX POLYGONS
    LOHMAN, RH
    MORRISON, TJ
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (09): : 1016 - 1018
  • [37] Tilings of convex polygons
    Kenyon, R
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (03) : 929 - &
  • [38] Exact Minkowski sums of polygons with holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 73 : 46 - 56
  • [39] Exact Minkowski Sums of Polygons With Holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    ALGORITHMS - ESA 2015, 2015, 9294 : 71 - 82
  • [40] In the Land of Convex Polygons Discrete Geometry of Polygons
    Ninjbat, Uuganbaatar
    Gombodorj, Bayarmagnai
    Damba, Purevsuren
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2019, 24 (05): : 583 - 595