Powers of staircase Schur functions and symmetric analogues of Bessel polynomials

被引:0
|
作者
Institut Gaspard Monge, Univ. de Marne-la-Vallee, 2 rue de la Butte-Verte, 93160 Noisy-le-Grand Cedex, France [1 ]
机构
来源
Discrete Math | / 1-3卷 / 213-227期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present several identities involving staircase Schur functions. These identities are then interpreted in terms of a sequence of orthogonal polynomials in one variable x, with coefficients in the ring of symmetric functions. By an appropriate specialization these polynomials reduce to Bessel polynomials. This leads to a new determinantal expression for Bessel polynomials and suggests that their combinatorics might be linked to Young tableaux or shifted Young tableaux.
引用
收藏
相关论文
共 50 条
  • [21] Products of Bessel functions and associated polynomials
    Dattoli, Giuseppe
    Di Palma, Emanuele
    Sabia, Elio
    Licciardi, Silvia
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 507 - 514
  • [22] GENERATING FUNCTIONS FOR BESSEL AND RELATED POLYNOMIALS
    RAINVILLE, ED
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (01): : 104 - 106
  • [23] Schur convexity for a class of symmetric functions
    CHU YuMing 1
    2 Institut de Mathmatiques
    ScienceChina(Mathematics), 2010, 53 (02) : 465 - 474
  • [24] Schur Convexity for a Class of Symmetric Functions
    Wang, Shu-hong
    Zhang, Tian-yu
    Xi, Bo-yan
    INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 626 - 634
  • [25] THE BASIC BESSEL-FUNCTIONS AND POLYNOMIALS
    ISMAIL, MEH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (03) : 454 - 468
  • [26] Bilinear Identities on Schur Symmetric Functions
    Dimitri Gurevich
    Pavel Pyatov
    Pavel Saponov
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 31 - 48
  • [27] STABLE SYMMETRIC POLYNOMIALS AND THE SCHUR-AGLER CLASS
    Knese, Greg
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (04) : 1603 - 1620
  • [28] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [29] SCHUBERT POLYNOMIALS AND SKEW SCHUR-FUNCTIONS
    KOHNERT, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (2-3) : 205 - 210
  • [30] Quantum schubert polynomials and quantum Schur functions
    Kirillov, AN
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (3-4) : 385 - 404