An improved algorithm for developing 'special' finite element shape functions

被引:0
|
作者
Dept of Mech Engineering, The Ohio State University, Columbus OH 43210, United States [1 ]
机构
来源
Commun Numer Methods Eng | / 9卷 / 687-693期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] An Improved Time Integration Algorithm: A Collocation Time Finite Element Approach
    Kim, Wooram
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2017, 17 (02)
  • [42] An improved finite-element flux-corrected transport algorithm
    Georghiou, GE
    Morrow, R
    Metaxas, AC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) : 605 - 620
  • [43] Improved algorithm for the detection of bifurcation points in nonlinear finite element problems
    Leger, S.
    Hache, J.
    Traore, S.
    COMPUTERS & STRUCTURES, 2017, 191 : 1 - 11
  • [44] Electromagnetic Tomography based on Finite Element Method and Improved Genetic Algorithm
    Li, Hua
    Pan, Tingting
    Zhang, Yinxue
    Sun, Jing
    Liu, Zhiqiang
    2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL MECHATRONICS AND AUTOMATION, 2009, : 430 - 433
  • [45] FINITE-DIFFERENCE AND FINITE-ELEMENT DISCRETIZATION PROCEDURES WITH IMPROVED CONTINUITY OF INTERPOLATION FUNCTIONS
    GIRDINIO, P
    MOLFINO, P
    MOLINARI, G
    PUGLISI, L
    VIVIANI, A
    IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (06) : 2558 - 2561
  • [46] Nonlinear Winkler-based beam element with improved displacement shape functions
    Limkatanyu, Suchart
    Kuntiyawichai, Kittisak
    Spacone, Enrico
    Kwon, Minho
    KSCE JOURNAL OF CIVIL ENGINEERING, 2013, 17 (01) : 192 - 201
  • [47] Nonlinear Winkler-based beam element with improved displacement shape functions
    Suchart Limkatanyu
    Kittisak Kuntiyawichai
    Enrico Spacone
    Minho Kwon
    KSCE Journal of Civil Engineering, 2013, 17 : 192 - 201
  • [48] High-Order Shape Functions in the Scaled Boundary Finite Element Method Revisited
    Hauke Gravenkamp
    Albert A. Saputra
    Sascha Duczek
    Archives of Computational Methods in Engineering, 2021, 28 : 473 - 494
  • [49] Multiresolution molecular mechanics: A unified and consistent framework for general finite element shape functions
    Yang, Qingcheng
    To, Albert C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 384 - 418
  • [50] High-Order Shape Functions in the Scaled Boundary Finite Element Method Revisited
    Gravenkamp, Hauke
    Saputra, Albert A.
    Duczek, Sascha
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (02) : 473 - 494