On the stability of periodic orbits in lattice dynamical systems

被引:0
|
作者
Fernandez, Bastien [1 ]
Morante, Antonio [2 ]
机构
[1] Centre de Physique Théorique, CNRS Luminy Case 907, 13288 Marseille Cedex 09, France
[2] Inst. Invest. en Comunicacion Optica, UASLP, Av. Karakorum #1470, San Luis Potosí, Mexico
关键词
Hilbert space - Lattice dynamical systems - Periodic orbits;
D O I
10.1080/14689360109696235
中图分类号
学科分类号
摘要
引用
收藏
页码:247 / 252
相关论文
共 50 条
  • [21] Bifurcation equations for periodic orbits of implicit discrete dynamical systems
    Henrique M. Oliveira
    Nonlinear Dynamics, 2018, 91 : 387 - 402
  • [22] A NEW METHOD FOR CONSTRUCTING PERIODIC ORBITS IN NONLINEAR DYNAMICAL SYSTEMS
    BENNETT, A
    PALMORE, J
    AIAA JOURNAL, 1969, 7 (06) : 998 - &
  • [23] PERIODIC-ORBITS OF DYNAMICAL-SYSTEMS WITH CHAOTIC BEHAVIOR
    DEGREGORIO, S
    SCOPPOLA, E
    TIROZZI, B
    LECTURE NOTES IN PHYSICS, 1982, 173 : 67 - 74
  • [24] Constraint Based Computation of Periodic Orbits of Chaotic Dynamical Systems
    Goldsztejn, Alexandre
    Granvilliers, Laurent
    Jermann, Christophe
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2013, 2013, 8124 : 774 - 789
  • [25] COEXISTING PERIODIC ORBITS IN VIBRO-IMPACTING DYNAMICAL SYSTEMS
    李群宏
    陆启韶
    Applied Mathematics and Mechanics(English Edition), 2003, (03) : 261 - 273
  • [26] Coexisting periodic orbits in vibro-impacting dynamical systems
    Li Qun-hong
    Lu Qi-shao
    Applied Mathematics and Mechanics, 2003, 24 (3) : 261 - 273
  • [27] Convergence Time towards Periodic Orbits in Discrete Dynamical Systems
    San Martin, Jesus
    Porter, Mason A.
    PLOS ONE, 2014, 9 (04):
  • [28] Coexisting periodic orbits in vibro-impacting dynamical systems
    Li, QH
    Lu, QS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (03) : 261 - 273
  • [29] Enumerating periodic orbits in sequential dynamical systems over graphs
    Aledo, Juan A.
    Diaz, Luis G.
    Martinez, Silvia
    Valverde, Jose C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405
  • [30] On the 2/1 resonant planetary dynamics - periodic orbits and dynamical stability
    Voyatzis, G.
    Kotoulas, T.
    Hadjidemetriou, J. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (04) : 2147 - 2156