Two-dimensional curved beam element with higher-order hierarchical transverse approximation for laminated composites

被引:0
|
作者
机构
[1] Surana, K.S.
[2] Nguyen, S.H.
来源
Surana, K.S. | 1600年 / 36期
关键词
Higher-Order Hierarchical Transverse Approximation - Lagrange Interpolating Polynomials - Linear Static Analysis - Two-Dimensional Curved Beam Element;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
相关论文
共 50 条
  • [41] A HIGHER-ORDER ELEMENT FOR STEPPED ROTATING BEAM VIBRATION
    SUBRAMANIAN, G
    BALASUBRAMANIAN, TS
    JOURNAL OF SOUND AND VIBRATION, 1986, 110 (01) : 167 - 171
  • [42] HIGHER-ORDER HORIZONTALLY-CURVED BEAM FINITE-ELEMENT INCLUDING WARPING FOR STEEL BRIDGES
    ELAMIN, FM
    KASEM, MA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (01) : 159 - 167
  • [43] Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory
    Ganapathi, M.
    Polit, O.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 91 : 190 - 202
  • [44] HIGHER-ORDER FINITE-ELEMENT MODELING OF LAMINATED COMPOSITE PLATES
    AHMED, NU
    BASU, PK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (01) : 123 - 139
  • [45] A HIGHER-ORDER FINITE-ELEMENT FOR ANALYSIS OF COMPOSITE LAMINATED STRUCTURES
    YU, H
    COMPOSITE STRUCTURES, 1994, 28 (04) : 375 - 383
  • [46] Efficient higher-order shell theory for laminated composites with multiple delaminations
    Kim, JS
    Cho, M
    AIAA JOURNAL, 2003, 41 (05) : 941 - 950
  • [47] Moving curved mesh adaptation for higher-order finite element simulations
    Luo, Xiao-Juan
    Shephard, Mark S.
    Lee, Lie-Quan
    Ge, Lixin
    Ng, Cho
    ENGINEERING WITH COMPUTERS, 2011, 27 (01) : 41 - 50
  • [48] Applications of layerwise higher-order finite element to curved shell laminates
    Suzuki, K
    Kimpara, I
    Kageyama, K
    COMPUTER METHODS IN COMPOSITE MATERIALS VI, 1998, : 443 - 452
  • [49] An extended finite element method with higher-order elements for curved cracks
    Stazi, FL
    Budyn, E
    Chessa, J
    Belytschko, T
    COMPUTATIONAL MECHANICS, 2003, 31 (1-2) : 38 - 48
  • [50] Moving curved mesh adaptation for higher-order finite element simulations
    Xiao-Juan Luo
    Mark S. Shephard
    Lie-Quan Lee
    Lixin Ge
    Cho Ng
    Engineering with Computers, 2011, 27 : 41 - 50