Micromechanical modelling of superelasticity in shape memory alloys

被引:0
|
作者
Patoor, E. [1 ]
Eberhardt, A. [1 ]
Berveiller, M. [1 ]
机构
[1] Universite de Metz, Metz, France
来源
| 1996年 / Editions de Physique, Les Ulis, France卷 / 06期
关键词
Elasticity - Integral equations - Kinematics - Martensite - Mathematical models - Mechanics - Microstructure - Phase transitions - Shape memory effect - Strain - Thermodynamics - Volume fraction;
D O I
暂无
中图分类号
学科分类号
摘要
Micromechanical methods developed to describe the thermomechanical behavior of solids are applied to phase transition related problem. Results obtained are compared with those obtained using a macroscopic phenomenological approach. This micromechanical analysis is based on a kinematical description of the physical strain mechanisms and a definition of a local thermodynamical potential. Volume fractions of the different variants of martensite are chosen as internal variables to describe the evolution of the microstructural state of the material. This analysis determines local constitutive equations for the behavior. Global relationships are obtained using a self consistent scheme. This approach gives results in good agreement with experimental observations performed on Cu-based Shape Memory alloys.
引用
收藏
相关论文
共 50 条
  • [21] Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys
    Yang, Shuiyuan
    Zhang, Fan
    Wu, Jialin
    Lu, Yong
    Shi, Zhan
    Wang, Cuiping
    Liu, Xingjun
    MATERIALS & DESIGN, 2017, 115 : 17 - 25
  • [22] Modelling shape memory alloys
    Bonetti, E
    Frémond, M
    Lexcellent, C
    JOURNAL DE PHYSIQUE IV, 2004, 115 : 383 - 390
  • [23] A micromechanical model for polycrystalline shape-memory alloys
    Hackl, K
    Schmidt-Baldassari, M
    Zhang, W
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 378 (1-2): : 503 - 506
  • [24] A micromechanical constitutive model for porous shape memory alloys
    Liu, Bingfei
    Dui, Guansuo
    Zhu, Yuping
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 1855 - 1861
  • [25] A micromechanical view of enhanced reversibility in shape memory alloys
    Hosseinzadeh, Mohammadreza
    Ahadi, Aslan
    Frenzel, Jan
    ACTA MATERIALIA, 2024, 273
  • [26] Superelasticity of TiNi-based shape memory alloys at micro/nanoscale
    Nien, Chiao-Yin
    Wang, Hsin-Kai
    Chen, Chih-Hsuan
    Ii, Seiichiro
    Wu, Shyi-Kaan
    Hsueh, Chun-Hway
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (22) : 2717 - 2726
  • [27] Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field
    Turabi, A. S.
    Karaca, H. E.
    Tobe, H.
    Basaran, B.
    Aydogdu, Y.
    Chumlyakov, Y. I.
    SCRIPTA MATERIALIA, 2016, 111 : 110 - 113
  • [28] Micromechanical modelling of a CuAlNi shape memory alloy behaviour
    Blanc, P
    Lexcellent, C
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 378 (1-2): : 465 - 469
  • [29] Phase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity
    Chatziathanasiou D.
    Chemisky Y.
    Meraghni F.
    Chatzigeorgiou G.
    Patoor E.
    Shape Memory and Superelasticity, 2015, 1 (03) : 359 - 374
  • [30] A variational multiscale method for inelasticity: Application to superelasticity in shape memory alloys
    Masud, A
    Xia, KM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4512 - 4531