Micromechanical modelling of superelasticity in shape memory alloys

被引:0
|
作者
Patoor, E. [1 ]
Eberhardt, A. [1 ]
Berveiller, M. [1 ]
机构
[1] Universite de Metz, Metz, France
来源
| 1996年 / Editions de Physique, Les Ulis, France卷 / 06期
关键词
Elasticity - Integral equations - Kinematics - Martensite - Mathematical models - Mechanics - Microstructure - Phase transitions - Shape memory effect - Strain - Thermodynamics - Volume fraction;
D O I
暂无
中图分类号
学科分类号
摘要
Micromechanical methods developed to describe the thermomechanical behavior of solids are applied to phase transition related problem. Results obtained are compared with those obtained using a macroscopic phenomenological approach. This micromechanical analysis is based on a kinematical description of the physical strain mechanisms and a definition of a local thermodynamical potential. Volume fractions of the different variants of martensite are chosen as internal variables to describe the evolution of the microstructural state of the material. This analysis determines local constitutive equations for the behavior. Global relationships are obtained using a self consistent scheme. This approach gives results in good agreement with experimental observations performed on Cu-based Shape Memory alloys.
引用
收藏
相关论文
共 50 条
  • [1] Micromechanical modelling of superelasticity in shape memory alloys
    Patoor, E
    Eberhardt, A
    Berveiller, M
    JOURNAL DE PHYSIQUE IV, 1996, 6 (C1): : 277 - 292
  • [2] Micromechanical modelling of the thermomechanical behavior of shape memory alloys
    Patoor, E
    Berveiller, M
    IUTAM SYMPOSIUM ON VARIATIONS OF DOMAIN AND FREE-BOUNDARY PROBLEMS IN SOLID MECHANICS, 1999, 66 : 17 - 24
  • [3] THE SHAPE MEMORY EFFECT AND THE SUPERELASTICITY OF ALLOYS
    FEDOTOV, SG
    DOKLADY AKADEMII NAUK SSSR, 1986, 290 (05): : 1115 - 1118
  • [4] SHAPE MEMORY AND SUPERELASTICITY OF ALLOYS.
    Fedotov, S.G.
    Soviet machine science, 1986, (06): : 98 - 101
  • [5] Superelasticity and Shape Memory Behavior of NiTiHf Alloys
    Sehitoglu H.
    Wu Y.
    Patriarca L.
    Li G.
    Ojha A.
    Zhang S.
    Chumlyakov Y.
    Nishida M.
    Shape Memory and Superelasticity, 2017, 3 (2) : 168 - 187
  • [6] Nonhysteretic Superelasticity of Shape Memory Alloys at the Nanoscale
    Zhang, Zhen
    Ding, Xiangdong
    Sun, Jun
    Suzuki, Tetsuro
    Lookman, Turab
    Otsuka, Kazuhiro
    Ren, Xiaobing
    PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [7] Microstructural Evolution of Superelasticity in Shape Memory Alloys
    Min-Jyun Lai
    Hung-Yuan Lu
    Nien-Ti Tsou
    Multiscale Science and Engineering, 2019, 1 (2) : 141 - 149
  • [8] Micromechanical behaviour of the shape memory alloys
    Abdous, L
    Sebbani, MJE
    Bensalah, MO
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 1998, 95 (02): : 243 - +
  • [9] Micromechanical modelling of shape memory polymers
    Boel, Markus
    Reese, Stefanie
    SMART MATERIALS & MICRO/NANOSYSTEMS, 2009, 54 : 137 - 142
  • [10] Grain-size effect in micromechanical modelling of hysteresis in shape memory alloys
    Stupkiewicz, Stanislaw
    Petryk, Henryk
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (10-11): : 783 - 795