Modeling method based on support vector machines within the Bayesian evidence framework

被引:0
|
作者
Yan, Wei-Wu [1 ]
Chang, Jun-Lin [1 ]
Shao, Hui-He [1 ]
机构
[1] Dept. of Automat., Shanghai Jiaotong Univ., Shanghai 200030, China
来源
Kongzhi yu Juece/Control and Decision | 2004年 / 19卷 / 05期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
7
引用
收藏
页码:525 / 528
相关论文
共 50 条
  • [31] Support vector machines for urban growth modeling
    Huang, Bo
    Xie, Chenglin
    Tay, Richard
    GEOINFORMATICA, 2010, 14 (01) : 83 - 99
  • [32] Probability output modeling for support vector machines
    Zhang, Xiang
    Xiao, Xiaoling
    Tian, Jinwen
    Liu, Jian
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [33] Support vector machines for urban growth modeling
    Bo Huang
    Chenglin Xie
    Richard Tay
    GeoInformatica, 2010, 14 : 83 - 99
  • [34] Modeling nuclear properties with support vector machines
    Li, H.
    Clark, J. W.
    Mavrommatis, E.
    Athanassopoulos, S.
    Gernoth, K. A.
    CONDENSED MATTER THEORIES, VOL 20, 2006, 20 : 505 - +
  • [35] Improved MRI restoration by integrating Bayesian formalism and support vector machines in a time delayed priors framework
    Karras, D. A.
    Mertzios, B. G.
    IST 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL WORKSHOP ON IMAGING SYSTEMS AND TECHNIQUES, 2006, : 192 - +
  • [36] Soft sensor modeling of regression support vector based on bayesian methods
    Zhu, Jianhong
    Ding, Jian
    Yang, Huizhong
    Jiang, Yongsen
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38 (SUPPL.): : 136 - 138
  • [37] Forecasting electricity market price spikes based on Bayesian expert with support vector machines
    Wu, Wei
    Zhou, Jianzhong
    Mo, Li
    Zhu, Chengjun
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 205 - 212
  • [38] Support vector machines using Bayesian-based approach in the issue of unbalanced classifications
    Chung, Hung-Yuan
    Ho, Chih-Hsiang
    Hsu, Che-Chang
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 11447 - 11452
  • [39] The use of Bayesian framework for kernel selection in vector machines classifiers
    Kropotov, D
    Ptashko, N
    Vetrov, D
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 252 - 261
  • [40] Fault tolerance in the framework of support vector machines based model predictive control
    Saludes Rodil, Sergio
    Fuente, M. J.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1127 - 1139