EMBEDDING MULTIDIMENSIONAL ABLATION PROBLEMS IN INVERSE HEAT CONDUCTION PROBLEMS USING FINITE DIFFERENCES.

被引:0
|
作者
Randall, John D.
机构
来源
| 1978年
关键词
MATHEMATICAL TECHNIQUES - Finite Difference Method;
D O I
暂无
中图分类号
学科分类号
摘要
A unique numerical lumped parameter finite differences algorithm is presented for determining a material's thermal response to ablation. The unique feature of the procedure is an embedding of the ablation problem in an inverse heat conduction problem which geometrically encloses it. The algorithm is applicable to multidimensional problems and permits the use of both implicit approximate factorization and explicit finite difference approximations. An application of the numerical method is demonstrated by applying it to the thermal analysis of a reentry body.
引用
收藏
相关论文
共 50 条
  • [31] Solving the inverse heat conduction problems with the use of heat functions
    Cialkowski, MJ
    Futakiewicz, S
    Hozejowski, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S673 - S674
  • [32] Sensitivity coefficients and heat polynomials in the inverse heat conduction problems
    Kruk, B
    Sokala, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S693 - S694
  • [33] A technique for uncertainty analysis for inverse heat conduction problems
    Blackwell, Ben
    Beck, James V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (04) : 753 - 759
  • [34] A global time treatment for inverse heat conduction problems
    Frankel, JI
    Keyhani, M
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (04): : 673 - 683
  • [35] Physical regularization for inverse problems of stationary heat conduction
    Poznań University of Technology, 5 Maria Sklodowska-Curie Sq., 60-965 Poznań, Poland
    不详
    J Inverse Ill Posed Probl, 2007, 4 (347-364):
  • [36] Global time treatment for inverse heat conduction problems
    Frankel, J.I.
    Keyhani, M.
    Journal of Heat Transfer, 1997, 119 (04): : 673 - 683
  • [37] BEM APPROACH TO INVERSE HEAT-CONDUCTION PROBLEMS
    KURPISZ, K
    NOWAK, AJ
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1992, 10 (04) : 291 - 297
  • [38] Analytical Conditions for Optimality in Inverse Problems of Heat Conduction
    Diligenskaya, A. N.
    Rapoport, E. Ya
    HIGH TEMPERATURE, 2021, 59 (2-6) : 292 - 301
  • [39] Review of Computational Schemes in Inverse Heat Conduction Problems
    Chang, Chih-Wen
    Liu, Chein-Hung
    Wang, Cheng-Chi
    SMART SCIENCE, 2018, 6 (01) : 94 - 103
  • [40] Physical regularization for inverse problems of stationary heat conduction
    Cialkowski, M.J.
    Frackowiak, A.
    Grysa, K.
    Journal of Inverse and Ill-Posed Problems, 2007, 15 (04): : 347 - 364