Exact fully 3D Navier-Stokes solutions for benchmarking

被引:0
|
作者
机构
[1] Ethier, C.Ross
[2] Steinman, D.A.
来源
Ethier, C.Ross | 1600年 / John Wiley & Sons Ltd, Chichester, United Kingdom卷 / 19期
关键词
Equations of motion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A fully 3D finite volume method for incompressible Navier-Stokes equations
    Deponti, Alberto
    Pennati, Vincenzo
    De Biase, Lucia
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 52 (06) : 617 - 638
  • [22] A criterion for the existence of strong solutions for the 3D Navier-Stokes equations
    Kasyanov, Pavlo O.
    Toscano, Luisa
    Zadoianchuk, Nina V.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 15 - 17
  • [23] GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS
    PONCE, G
    RACKE, R
    SIDERIS, TC
    TITI, ES
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) : 329 - 341
  • [24] The 3D Navier-Stokes Equations: Invariants, Local and Global Solutions
    Semenov, Vladimir, I
    AXIOMS, 2019, 8 (02)
  • [25] On the Energy Equality for Weak Solutions of the 3D Navier-Stokes Equations
    Cheskidov, Alexey
    Friedlander, Susan
    Shvydkoy, Roman
    ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, : 171 - +
  • [26] A fully discrete Nonlinear Galerkin Method for the 3D Navier-Stokes equations
    Guermond, J. -L.
    Prudhomme, Serge
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 759 - 775
  • [27] A local smoothness criterion for solutions of the 3D Navier-Stokes equations
    Robinson, James C.
    Sadowski, Witold
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 : 159 - 178
  • [28] Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations
    Gibbon, JD
    Fokas, AS
    Doering, CR
    PHYSICA D, 1999, 132 (04): : 497 - 510
  • [29] Spatial smoothness of the stationary solutions of the 3D Navier-Stokes equations
    Odasso, Cyril
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 686 - 699
  • [30] Topological properties of strong solutions for the 3D Navier-Stokes equations
    Kasyanov, Pavlo O.
    Toscano, Luisa
    Zadoianchuk, Nina V.
    Solid Mechanics and its Applications, 2014, 211 : 181 - 187