Regularization Newton method for solving nonlinear complementarity problems

被引:0
|
作者
School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia [1 ]
机构
来源
Appl Math Optim | / 3卷 / 315-339期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Solving nonlinear complementarity problems with neural networks: a reformulation method approach
    Liao, LZ
    Qi, HD
    Qi, LQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 343 - 359
  • [42] A nonsmooth Newton method for solving the generalized complementarity problem
    Vivas, Hevert
    Perez, Rosana
    Arias, Carlos A. A.
    NUMERICAL ALGORITHMS, 2024, 95 (02) : 551 - 574
  • [43] A nonsmooth Newton method for solving the generalized complementarity problem
    Hevert Vivas
    Rosana Pérez
    Carlos A. Arias
    Numerical Algorithms, 2024, 95 : 551 - 574
  • [44] Inexact Newton Algorithm to Solve Nonlinear Complementarity Problems
    Kalashnykova, Nataliya I.
    Kalashnikov, Vyacheslav V.
    Franco, Aaron Arevalo
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 67 - +
  • [45] Beyond monotonicity in regularization methods for nonlinear complementarity problems
    Facchinei, F
    Kanzow, C
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1150 - 1161
  • [46] REMARKS ON THE NEWTON METHOD FOR SOLVING NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION PROBLEMS
    KORNER, F
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1990, 24 (03): : 287 - 294
  • [47] A modulus-based nonsmooth Newton's method for solving horizontal linear complementarity problems
    Mezzadri, F.
    Galligani, E.
    OPTIMIZATION LETTERS, 2021, 15 (05) : 1785 - 1798
  • [48] A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems
    Huang, Baohua
    Li, Wen
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (01) : 345 - 381
  • [49] A family of new smoothing functions and a nonmonotone smoothing Newton method for the nonlinear complementarity problems
    Zhu J.
    Liu H.
    Liu C.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 647 - 662
  • [50] A modified feasible semi-smooth asymptotically Newton method for nonlinear complementarity problems
    Ma, Changfeng
    Chen, Baoguo
    Pan, Shaojun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,