Linearized stability of the viscous incompressible bipolar equations

被引:0
|
作者
Northern Illinois Univ, DeKalb, United States [1 ]
机构
来源
Nonlinear Anal Theory Methods Appl | / 9卷 / 1013-1030期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] ON POINTWISE DECAY OF LINEARIZED STATIONARY INCOMPRESSIBLE VISCOUS FLOW AROUND ROTATING AND TRANSLATING BODIES
    Deuring, Paul
    Kracmar, Stanislav
    Necasova, Sarka
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 705 - 738
  • [32] STABILITY OF A ROTOR PARTIALLY FILLED WITH A VISCOUS INCOMPRESSIBLE FLUID
    KOLLMANN, FG
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (03): : 686 - 687
  • [33] The stability of laminary movements of incompressible viscous movements.
    Rosenblatt, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1931, 193 : 220 - 222
  • [34] On the stability of the general laminar movement of incompressible viscous fluids
    Rosenblatt, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1932, 194 : 2284 - 2286
  • [35] Stability of axisymmetric swirl flows of viscous incompressible fluid
    S. P. Aktershev
    P. A. Kuibin
    Thermophysics and Aeromechanics, 2013, 20 : 317 - 326
  • [36] Stability of axisymmetric swirl flows of viscous incompressible fluid
    Aktershev, S. P.
    Kuibin, P. A.
    THERMOPHYSICS AND AEROMECHANICS, 2013, 20 (03) : 317 - 326
  • [37] On a problem of linearized stability for fractional difference equations
    Jan Čermák
    Luděk Nechvátal
    Nonlinear Dynamics, 2021, 104 : 1253 - 1267
  • [38] Linearized asymptotic stability for fractional differential equations
    Nguyen Dinh Cong
    Thai Son Doan
    Siegmund, Stefan
    Hoang The Tuan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (39)
  • [39] STABILITY OF A ROTOR PARTIALLY FILLED WITH A VISCOUS INCOMPRESSIBLE FLUID
    HENDRICKS, SL
    MORTON, JB
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1979, 46 (04): : 913 - 918
  • [40] Stability of a Steady Viscous Incompressible Flow Past an Obstacle
    Jiří Neustupa
    Journal of Mathematical Fluid Mechanics, 2009, 11 : 22 - 45