Non-linear dynamics of elastic rods

被引:18
|
作者
Eliseyev, V.V.
机构
关键词
Columns--Stability - Mathematical Models - Mathematical Techniques--Vectors - Strain--Analysis - Stresses--Shear;
D O I
10.1016/0021-8928(88)90039-1
中图分类号
学科分类号
摘要
The general equations of non-linear dynamics of elastic rods are examined taking tension, transverse shear, eccentricity, rotational inertia, and also initial stresses into account. A second-order theory is constructed for Timoshenko and classical-type models. A variational formulation is given for the linearized problem. Tension and shear effects are examined in the problem of the stability of a compressed column.
引用
收藏
页码:493 / 498
相关论文
共 50 条
  • [31] STABILITY OF NON-LINEAR ELASTIC SHELLS
    BABENKO, VI
    SENENKO, AD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (10): : 889 - 892
  • [32] EQUATIONS OF NON-LINEAR ELASTIC FERROELECTRICS
    MAUGIN, GA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (06): : T215 - T217
  • [33] NON-LINEAR ANALYSIS OF EXTENSIBLE TIE-RODS
    HUDDLESTON, JV
    DOWD, JP
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1979, 105 (11): : 2456 - 2460
  • [34] Non-linear cushion dynamics
    Schueneman, Herbert H.
    Test Engineering & Management, 1999, 61 (03):
  • [35] Non-linear dynamics in parkinsonism
    Darbin, Olivier
    Adams, Elizabeth
    Martino, Anthony
    Naritoku, Leslie
    Dees, Daniel
    Naritoku, Dean
    FRONTIERS IN NEUROLOGY, 2013, 4
  • [36] Non-linear dynamics of galaxies
    Antonov, VA
    ORDER AND CHAOS IN STELLAR AND PLANETARY SYSTEMS, 2004, 316 : 357 - 362
  • [37] Methods of non-linear dynamics
    Meesmann, M
    Braun, C
    Freking, A
    Koller, M
    Kowallik, P
    ADVANCES IN NONINVASIVE ELECTROCARDIOGRAPHIC MONITORING TECHNIQUES, 2000, 229 : 413 - 420
  • [38] TOOLKIT FOR NON-LINEAR DYNAMICS
    GUCKENHEIMER, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (08): : 586 - &
  • [39] SOLUTIONS OF THE KdV-mKdV EQUATIONS ARISING IN NON-LINEAR ELASTIC RODS UNDER FRACTAL DIMENSION
    Shang, Chu-Han
    Yi, Huai-An
    THERMAL SCIENCE, 2024, 28 (3A): : 2125 - 2133
  • [40] Discrete a Non-linear Hamiltonian Dynamics Models of Hyper Elastic Deformable Media
    Petushkov, Vladimir A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2013, 6 (02): : 237 - 246