Irrational tilt grain boundaries as one-dimensional quasicrystals

被引:0
|
作者
Sutton, A.P. [1 ]
机构
[1] Oxford Univ, United Kingdom
来源
| 1600年 / 36期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Crystals
引用
收藏
相关论文
共 50 条
  • [11] Purcell effect in one-dimensional photonic quasicrystals
    Morozov, K. M.
    Ivanov, K. A.
    Gubaydullin, A. R.
    Kaliteevski, M. A.
    OPTICS AND SPECTROSCOPY, 2017, 122 (02) : 235 - 242
  • [12] A straight dislocation in one-dimensional hexagonal quasicrystals
    Li, XF
    Fan, TY
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1999, 212 (01): : 19 - 26
  • [13] Dynamical upper bounds for one-dimensional quasicrystals
    Damanik, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) : 327 - 341
  • [14] Irrational anomalies in one-dimensional Anderson localization
    Sepehrinia, Reza
    PHYSICAL REVIEW B, 2010, 82 (04)
  • [15] QUASICRYSTALS AT GRAIN-BOUNDARIES
    RIVIER, N
    LAWRENCE, AJA
    PHYSICA B & C, 1988, 150 (1-2): : 190 - 202
  • [16] Coincidence grain boundaries in quasicrystals
    Warrington, DH
    BOUNDARIES & INTERFACES IN MATERIALS: THE DAVID A. SMITH SYMPOSIUM, 1998, : 341 - 346
  • [17] QUASICRYSTALS AT GRAIN BOUNDARIES.
    Rivier, N.
    Lawrence, A.J.A.
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 150 (1-2): : 190 - 202
  • [18] Geometry of grain boundaries in quasicrystals
    Ovidko, IA
    FIZIKA TVERDOGO TELA, 1994, 36 (12): : 3632 - 3634
  • [19] On three-dimensional elastodynamic problems of one-dimensional quasicrystals
    Yaslan, H. Cerdik
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 614 - 630
  • [20] Log-dimensional spectral properties of one-dimensional quasicrystals
    Damanik, D
    Landrigan, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (07) : 2209 - 2216