Decomposition of generalized frequency response functions for nonlinear systems using symbolic computation

被引:0
|
作者
Univ of Sheffield, Sheffield, United Kingdom [1 ]
机构
来源
Int J Control | / 4卷 / 589-618期
关键词
Symbolic computation;
D O I
暂无
中图分类号
学科分类号
摘要
A symbolic manipulation procedure, which both computes and automatically decomposes the generalized frequency response functions of nonlinear rational, polynomial and integrodifferential equation models into a set of closed-form nth order transfer functions, is presented. The symbolic representation exposes the explicit relationship between the model parameters and the nonlinear transfer functions in the frequency domain and leads to important insights into the characterization of nonlinear systems. Examples for each model type are included to demonstrate the symbolic transfer function approach.
引用
收藏
相关论文
共 50 条
  • [21] Generalized Predictive Control of Nonlinear Systems using Evolutionary Computation
    Camasca, Claudio A.
    Swain, Akshya K.
    Patel, Nitish D.
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 158 - 163
  • [22] The parametric characteristic of frequency response functions for nonlinear systems
    Jing, Xing Jian
    Lang, Zi Qiang
    Billings, Stephen A.
    Tomlinson, Geofrey R.
    INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (12) : 1552 - 1564
  • [23] Characterization of Frequency Response Functions for Nonlinear Convergent Systems
    Alcorta-Garcia, E.
    Rodriguez-Alfaro, L. H.
    Diaz-Romero, D. A.
    Posadas-Castillo, C.
    2010 CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL'10), 2010, : 630 - 635
  • [24] Symbolic computation for nonlinear systems using quotients over skew polynomial ring
    Halas, Miroslav
    Huba, Mikulas
    PROCEEDINGS OF 2006 MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2006, : 1002 - +
  • [25] Symbolic computation for the analysis and synthesis of nonlinear control systems
    Kugi, A
    Schlacher, K
    Novak, R
    SOFTWARE FOR ELECTRICAL ENGINEERING ANALYSIS AND DESIGN IV, 1999, 2 : 255 - 264
  • [26] Symbolic computation tools for dynamical nonlinear control systems
    Rodríguez-Millán, J
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2001, 2001, 2178 : 393 - 404
  • [27] Poincare Bifurcation of Some Nonlinear Oscillator of Generalized Lienard Type Using Symbolic Computation Method
    Zhu, Hongying
    Qin, Bin
    Yang, Sumin
    Wei, Minzhi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (08):
  • [28] Fault detection of nonlinear rotor bearing systems by using the Nonlinear Output Frequency Response Functions (NOFRFs)
    Zhu, Yunpeng
    Lang, Z. Q.
    Luo, Zhong
    Rajintha, S.
    Gunawardena, A. S.
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [29] Analysis of the effects of time delay in nonlinear systems using generalised frequency response functions
    Swain, A. K.
    Mendes, E. M. A. M.
    Nguang, S. K.
    JOURNAL OF SOUND AND VIBRATION, 2006, 294 (1-2) : 341 - 354
  • [30] Frequency response functions and Bode plots for nonlinear convergent systems
    Pavlov, Alexey
    van de Wouw, Nathan
    Nijmeijer, Henk
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3767 - +