A Deterministic Construction of Normal Bases With Complexity O(n3 + n log n log(log n) log q)

被引:0
|
作者
Poli, A.
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] (poly(log log n), poly(log log n))-restricted verifiers are unlikely to exist for languages in NP
    Fotakis, D
    Spirakis, P
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1996, 1996, 1113 : 360 - 371
  • [32] An O(n3/2 √log(n)) algorithm for sorting by reciprocal translocations
    Ozery-Flato, Michal
    Shamir, Ron
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2006, 4009 : 258 - 269
  • [33] FINDING CONNECTED COMPONENTS IN O(LOG-N LOG LOG-N) TIME ON THE EREW PRAM
    CHONG, KW
    LAM, TW
    JOURNAL OF ALGORITHMS, 1995, 18 (03) : 378 - 402
  • [34] AN O(N3LOG N) DETERMINISTIC AND AN O(N3) LAS-VEGAS ISOMORPHISM TEST FOR TRIVALENT GRAPHS
    GALIL, Z
    HOFFMANN, CM
    LUKS, EM
    SCHNORR, CP
    WEBER, A
    JOURNAL OF THE ACM, 1987, 34 (03) : 513 - 531
  • [35] INSERTION SORT is O(n log n)
    Bender, MA
    Farach-Colton, M
    Mosteiro, MA
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (03) : 391 - 397
  • [36] Insertion Sort is O(n log n)
    Michael A. Bender
    Martin Farach-Colton
    Miguel A. Mosteiro
    Theory of Computing Systems, 2006, 39 : 391 - 397
  • [37] Minimum Cut of Directed Planar Graphs in O(n log log n) Time
    Mozes, Shay
    Nikolaev, Kirill
    Nussbaum, Yahav
    Weimann, Oren
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 477 - 494
  • [38] An O (log n/log log n) upper bound on the price of stability for undirected Shapley network design games
    Li, Jian
    INFORMATION PROCESSING LETTERS, 2009, 109 (15) : 876 - 878
  • [39] Pairing Heaps with O(log log n) decrease Cost
    Elmasry, Amr
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 471 - 476
  • [40] Dynamic planar convex hull with optimal query time and O(log n•log log n) update time
    Brodal, GS
    Jacob, R
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 57 - 70