A hybrid approach to global optimization using a clustering algorithm in a genetic search framework

被引:1
|
作者
Hanagandi, Vijay [1 ]
Nikolaou, Michael [2 ]
机构
[1] General Electric Co., Corporate R and D Center, Schenectady, NY 12301, United States
[2] Chemical Engineering Department, Texas A and M University, College Station, TX 77843-3122, United States
来源
Computers and Chemical Engineering | 1998年 / 22卷 / 12期
关键词
Clustering algorithm - Global optimization - Hybrid approach;
D O I
暂无
中图分类号
学科分类号
摘要
The concern of this work is global optimization using genetic algorithms (GAs). In this work we propose a synergy between the cluster analysis technique, popular in classical stochastic global optimization, and the GA to accomplish global optimization. This synergy minimizes redundant searches around local optima and enhances the capability of the GA to explore new areas in the search space. The proposed methodology demonstrates superior performance when compared with the simple GA on benchmark cases. We also report our solution of the optimal pumps configuration synthesis problem.
引用
收藏
页码:1913 / 1925
相关论文
共 50 条
  • [41] A clustering approach for software defect prediction using hybrid social mimic optimization algorithm
    Thirumoorthy, K.
    Britto, J. Jerold John
    COMPUTING, 2022, 104 (12) : 2605 - 2633
  • [42] A clustering approach for software defect prediction using hybrid social mimic optimization algorithm
    K Thirumoorthy
    J Jerold John Britto
    Computing, 2022, 104 : 2605 - 2633
  • [43] A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization
    Shehadeh, Hisham A.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 11739 - 11752
  • [44] A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization
    Hisham A. Shehadeh
    Neural Computing and Applications, 2021, 33 : 11739 - 11752
  • [45] A New Hybrid Approach for Document Clustering Using Tabu Search and Particle Swarm Optimization (TSPSO)
    Haribabu, T.
    Jayaprada, S.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 609 - 617
  • [46] A hybrid approach using chaotic dynamics and global search algorithms for combinatorial optimization problems
    Igeta, Hideki
    Hasegawa, Mikio
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2011, 2 (04): : 497 - 507
  • [47] Global Optimum Search for NONMEM Using Genetic Algorithm
    Jung, Insook
    Heo, Gi-Su
    Jeon, Ji-Young
    Im, Yong-Jin
    Chae, Soo-Wan
    Kim, Min-Gul
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 : S88 - S89
  • [48] Efficient text document clustering approach using multi-search Arithmetic Optimization Algorithm
    Abualigah, Laith
    Almotairi, Khaled H.
    Al-qaness, Mohammed A. A.
    Ewees, Ahmed A.
    Yousri, Dalia
    Abd Elaziz, Mohamed
    Nadimi-Shahraki, Mohammad H.
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [49] A GLOBAL OPTIMIZATION ALGORITHM USING ADAPTIVE RANDOM SEARCH
    MASRI, SF
    BEKEY, GA
    SAFFORD, FB
    APPLIED MATHEMATICS AND COMPUTATION, 1980, 7 (04) : 353 - 375
  • [50] Genetic optimization of hybrid clustering algorithm in mobile wireless sensor networks
    Sangeetha, M.
    Sabari, A.
    SENSOR REVIEW, 2018, 38 (04) : 526 - 533