Min-max problem for evaluating the form error of a circle

被引:0
|
作者
Jywe, Wen-Yuh [1 ]
Liu, Chien-Hong [2 ]
Chen, Cha'o-Kuang [2 ]
机构
[1] Department of Automation Engineering, Natl. Huwei Inst. Technol., H., Yinlin, Taiwan
[2] Department of Mechanical Engineering, National Cheng-Kung University, 701, Tainan, Taiwan
关键词
Error analysis - Linear equations - Mathematical models - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
There have been many studies to evaluate the form error of a circle. Most of them, such as the optimum methods and limacon model, employed the approximate solution to obtain the desired results. In this paper, three mathematical models depending on the method used to select the exact control points are constructed to evaluate the analytic solution of the minimum circumscribed circle, the maximum inscribed circle and the minimum zone circle by directly resolving the simultaneous linear algebraic equations. These new and simple mathematical methods are verified to be useful for determining the exact solution.
引用
收藏
页码:273 / 282
相关论文
共 50 条
  • [41] Approximation schemes for the Min-Max Starting Time Problem
    Epstein, L
    Tassa, T
    ACTA INFORMATICA, 2004, 40 (09) : 657 - 674
  • [42] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    Munoz de la Pena, D.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6210 - 6215
  • [43] Approximation schemes for the Min-Max Starting Time Problem
    Leah Epstein
    Tamir Tassa
    Acta Informatica, 2004, 40 : 657 - 674
  • [44] Partial inverse min-max spanning tree problem
    Tayyebi, Javad
    Sepasian, Ali Reza
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1075 - 1091
  • [45] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    de la Pena, D. Munoz
    Camacho, E. F.
    AUTOMATICA, 2007, 43 (04) : 693 - 700
  • [46] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [47] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [48] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [49] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [50] Min-Max Design of Error Feedback Quantizers Without Overloading
    Ohno, Shuichi
    Ishihara, Yuma
    Nagahara, Masaaki
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (04) : 1395 - 1405