Probabilistic aspects in spoken document retrieval

被引:0
|
作者
机构
[1] Macherey, Wolfgang
[2] Jörg Viechtbauer, Hans
[3] Ney, Hermann
来源
Macherey, W. (w.macherey@informatik.rwth-aachen.de) | 1600年 / Hindawi Publishing Corporation卷 / 2003期
关键词
Error analysis - Heuristic methods - Information retrieval - Interpolation - Natural language processing systems - Probabilistic logics;
D O I
暂无
中图分类号
学科分类号
摘要
Accessing information in multimedia databases encompasses a wide range of applications in which spoken document retrieval (SDR) plays an important role. In SDR, a set of automatically transcribed speech documents constitutes the files for retrieval, to which a user may address a request in natural language. This paper deals with two probabilistic aspects in SDR. The first part investigates the effect of recognition errors on retrieval performance and inquires the question of why recognition errors have only a little effect on the retrieval performance. In the second part, we present a new probabilistic approach to SDR that is based on interpolations between document representations. Experiments performed on the TREC-7 and TREC-8 SDR task show comparable or even better results for the new proposed method than other advanced heuristic and probabilistic retrieval metrics.
引用
收藏
相关论文
共 50 条
  • [21] Cambridge University spoken document retrieval system
    Johnson, S.E.
    Jourlin, P.
    Moore, G.L.
    Sparck Jones, K.
    Woodland, P.C.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 1 : 49 - 52
  • [22] Spoken document retrieval for the languages of Hong Kong
    Meng, HM
    Hui, PY
    PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 201 - 204
  • [23] Automatic story segmentation for spoken document retrieval
    Hui, PY
    Tang, XO
    Meng, HM
    Lam, W
    Gao, XB
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 1319 - 1322
  • [24] WEIGHTED MATRIX FACTORIZATION FOR SPOKEN DOCUMENT RETRIEVAL
    Chen, Kuan-Yu
    Wang, Hsin-Min
    Chen, Berlin
    Chen, Hsin-Hsi
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8530 - 8534
  • [25] Speech transcription and spoken document retrieval in Finnish
    Kurimo, M
    Turunen, V
    Ekman, I
    MACHINE LEARNING FOR MULTIMODAL INTERACTION, 2005, 3361 : 253 - 262
  • [26] HANDLING VERBOSE QUERIES FOR SPOKEN DOCUMENT RETRIEVAL
    Lin, Shih-Hsiang
    Jan, Ea-Ee
    Chen, Berlin
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5552 - 5555
  • [27] Easy Listening: Spoken Document Retrieval in CHoral
    Heeren, Willemijn
    van der Werff, Laurens
    de Jong, Franciska
    Ordelman, Roeland
    Verschoor, Thijs
    van Hessen, Arjan
    Langelaar, Mies
    INTERDISCIPLINARY SCIENCE REVIEWS, 2009, 34 (2-3) : 236 - 252
  • [28] SpeechFind: Advances in spoken document retrieval for a National Gallery of the Spoken Word
    Hansen, JH
    Huang, RQ
    Zhou, B
    Seadle, M
    Deller, JR
    Gurijala, AR
    Kurimo, M
    Angkititrakul, P
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2005, 13 (05): : 712 - 730
  • [29] Improved spoken document retrieval with dynamic key term lexicon and probabilistic latent semantic analysis (PLSA)
    Hsieh, Ya-chao
    Huang, Yu-tsun
    Wang, Chien-chih
    Lee, Lin-shan
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 961 - 964
  • [30] Analysis of Probabilistic model for Document Retrieval in Information Retrieval
    Tamrakar, Astha
    Vishwakarma, Santosh K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 760 - 765