Speaker recognition using Kohonen's self-organizing feature map algorithm

被引:0
|
作者
Naylor, J. [1 ]
Higgins, A. [1 ]
Li, K.P. [1 ]
Schmoldt, D. [1 ]
机构
[1] ITT Defense Communications Div, United States
关键词
Computer Programming--Algorithms;
D O I
10.1016/0893-6080(88)90342-5
中图分类号
学科分类号
摘要
We used the Kohonen self-organizing feature mapping algorithm to derive speech templates for text-independent automatic speaker recognition. The speaker recognition algorithm is based on template matching. The Kohonen method of deriving templates was compared with an alternate method based on cluster averaging. We found the recognition performance of the two methods to be about the same, given equal computation. However, the Kohonen method has a practical advantage that the desired number of templates is specified in advance. This advantage can be significant, particularly for noisy or distorted speech data, because it avoids the need for the operator to 'tune' the system for the input data.
引用
收藏
相关论文
共 50 条
  • [31] Exploratory Data Analysis of Software Requirements Using Statistics and Kohonen's Self-Organizing Map
    Strba, Radoslav
    Strbova, Kristina
    Vondrak, Ivo
    Jezek, David
    Stolfa, Svatopluk
    PROCEEDINGS OF THE THIRD INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT-AECIA 2016, 2018, 565 : 77 - 86
  • [32] USE OF KOHONEN SELF-ORGANIZING FEATURE MAPS FOR HMM PARAMETER SMOOTHING IN SPEECH RECOGNITION
    ZHAO, Z
    ROWDEN, CG
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1992, 139 (06) : 385 - 390
  • [33] Feature selection for self-organizing map
    Benabdeslem, Khalid
    Lebbah, Mustapha
    PROCEEDINGS OF THE ITI 2007 29TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2007, : 45 - +
  • [34] Unsupervised case classification using Kohonen 'self-organizing feature map' in a case-based reasoning system
    Manickam, S
    Abidi, SSR
    IEEE 2000 TENCON PROCEEDINGS, VOLS I-III: INTELLIGENT SYSTEMS AND TECHNOLOGIES FOR THE NEW MILLENNIUM, 2000, : A524 - A527
  • [35] Yield stability analysis of maize hybrids using the self-organizing map of Kohonen
    Luiz Rafael Clovis
    Carlos Alberto Scapim
    Ronald José Barth Pinto
    Marcelo Vivas
    Janeo Eustáquio de Almeida Filho
    Antonio Teixeira do Amaral Júnior
    Euphytica, 2020, 216
  • [36] Self-Organizing Feature Map Preprocessed Vocabulary Renewal Algorithm for the Isolated Word Recognition System
    Serackis, A.
    Tamulevicius, G.
    Sledevic, T.
    Stasionis, L.
    Navakauskas, D.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2014, 20 (06) : 114 - 117
  • [37] Clustering the Imbalanced Datasets using Modified Kohonen Self-Organizing Map (KSOM)
    Ahmad, Azlin
    Yusoff, Rubiyah
    Ismail, Mohd Najib
    Rosli, Nenny Ruthfalydia
    2017 COMPUTING CONFERENCE, 2017, : 751 - 755
  • [38] A fuzzy self-organizing map algorithm for biological pattern recognition
    Karabulut, Mustafa
    Ibrikci, Turgay
    EXPERT SYSTEMS, 2012, 29 (01) : 25 - 38
  • [39] Yield stability analysis of maize hybrids using the self-organizing map of Kohonen
    Clovis, Luiz Rafael
    Scapim, Carlos Alberto
    Pinto, Ronald Jose Barth
    Vivas, Marcelo
    de Almeida Filho, Janeo Eustaquio
    do Amaral Junior, Antonio Teixeira
    EUPHYTICA, 2020, 216 (10)
  • [40] Recognition of Color Changes In Strawberry Juice Powders Using Self-Organizing Feature Map
    Przybyl, K.
    Gawalek, J.
    Gierz, L.
    Lukomski, M.
    Zaborowicz, M.
    Boniecki, P.
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806