MODEL-BASED RECOGNITION IN ROBOT VISION.

被引:254
|
作者
Chin, Roland T. [1 ]
Dyer, Charles R. [1 ]
机构
[1] Univ of Wisconsin, Madison, WI, USA, Univ of Wisconsin, Madison, WI, USA
来源
Computing surveys | 1986年 / 18卷 / 01期
关键词
COMPUTER PROGRAMMING - Algorithms - ROBOTICS - Vision Systems - ROBOTS; INDUSTRIAL - Vision Systems;
D O I
10.1145/6462.6464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a comparative study and survey of model-based object-recognition algorithms for robot vision. The goal of these algorithms is to recognize the identity, position, and orientation of randomly oriented industrial parts. In one form this is commonly referred to as the 'bin-picking' problem, in which the parts to be recognized are presented in a jumbled bin. The paper is organized according to 2-D, 2 one-half -D, and 3-D object representations, which are used as the basis for the recognition algorithms. Three central issues common to each category, namely, feature extraction, modeling, and matching, are examined in detail. An evaluation and comparison of existing industrial part-recognition systems and algorithms is given, providing insights for progress toward future robot vision systems.
引用
收藏
页码:67 / 108
相关论文
共 50 条