Maximum entropy principle and the logistic model

被引:0
|
作者
Leblanc, Raymond
Shapiro, Stanley
机构
[1] Dept. de Mathematiques et d'Info., UQTR, C.P. 500, Trois-Rivières, Que. G9A 5H7, Canada
[2] Dept. of Epidemiol. and Biostatist., McGill University, 1020 Pine Avenue West, Montreal, Que. H3A 1A2, Canada
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:51 / 62
相关论文
共 50 条
  • [41] Maximum Renyi entropy principle and the generalized Thomas-Fermi model
    Nagy, A.
    Romera, E.
    PHYSICS LETTERS A, 2009, 373 (8-9) : 844 - 846
  • [42] THE GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    KESAVAN, HK
    KAPUR, JN
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1042 - 1052
  • [43] Numerical taxonomy and the principle of maximum entropy
    Gyllenberg, M
    Koski, T
    JOURNAL OF CLASSIFICATION, 1996, 13 (02) : 213 - 229
  • [44] Statistics and quantum maximum entropy principle
    Trovato, M.
    Reggiani, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01): : 247 - 255
  • [45] An Integrated Model for Wind Power Forecasting Based On Maximum Entropy Principle
    He Dian
    Wu Junyong
    Ji Luyu
    Zhang Xilu
    Li Xue
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 2438 - 2444
  • [46] Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle
    Giovanni Mascali
    Vittorio Romano
    Continuum Mechanics and Thermodynamics, 2002, 14 : 405 - 423
  • [47] The maximum entropy principle in search theory
    Prokaev, A. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (01): : 27 - 42
  • [48] The maximum entropy principle for compositional data
    Weistuch, Corey
    Zhu, Jiening
    Deasy, Joseph O.
    Tannenbaum, Allen R.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [49] Maximum Entropy Principle in Image Restoration
    Petrovici, Mihai-Alexandra
    Damian, Cristian
    Coltuc, Daniela
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2018, 18 (02) : 77 - 84
  • [50] The maximum entropy principle in decision theory
    Prokaev, A. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2024, 20 (02): : 154 - 169