Complexity of graph partition problems

被引:0
|
作者
Feder, Tomas
Hell, Pavol
Klein, Sulamita
Motwani, Rajeev
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:464 / 472
相关论文
共 50 条
  • [41] Polynomial Constraint Satisfaction Problems, Graph Bisection, and the Ising Partition Function
    Scott, Alexander D.
    Sorkin, Gregory B.
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 5 (04)
  • [42] AN EFFICIENTLY SOLVABLE GRAPH PARTITION PROBLEM TO WHICH MANY PROBLEMS ARE REDUCIBLE
    GAVRIL, F
    INFORMATION PROCESSING LETTERS, 1993, 45 (06) : 285 - 290
  • [43] Preprocessing complexity for some graph problems parameterized by structural parameters
    Lafond, Manuel
    Luo, Weidong
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 130 - 139
  • [44] Preprocessing complexity for some graph problems parameterized by structural parameters
    Lafond, Manuel
    Luo, Weidong
    DISCRETE APPLIED MATHEMATICS, 2025, 371 : 46 - 59
  • [45] Some graph problems with equivalent lower bounds for query complexity
    Láce, L
    Praude, R
    Freivalds, R
    FCS '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER SCIENCE, 2005, : 80 - 86
  • [46] A note on the complexity of longest path problems related to graph coloring
    Pardalos, PM
    Migdalas, A
    APPLIED MATHEMATICS LETTERS, 2004, 17 (01) : 13 - 15
  • [47] Computational complexity of computing a partial solution for the Graph Automorphism problems
    Nagoya, Takayuki
    Toda, Seinosuke
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2064 - 2071
  • [48] Genus characterizes the complexity of graph problems: Some tight results
    Chen, JE
    Kanj, IA
    Perkovic, L
    Sedgwick, E
    Xia, G
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 845 - 856
  • [49] Extension of Some Edge Graph Problems: Standard and Parameterized Complexity
    Casel, Katrin
    Fernau, Henning
    Ghadikolaei, Mehdi Khosravian
    Monnot, Jerome
    Sikora, Florian
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2019, 2019, 11651 : 185 - 200