Discrete singular integral operator

被引:0
|
作者
Fan, Dashan
Lu, Shanzhen
Pan, Yibiao
机构
来源
Acta Mathematica Sinica | 1998年 / 14卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that {αk}k=- infinity infinity is a Lacunary sequence of positive numbers satisfying qq αk+1/αk = α gt; 1 and that Ω(y prime ) is a function in the Besov space B10,1(Sn-1) where Sn-1 is the unit sphere on Rn(n >= 2). We prove that if integralS(n-1) Ω(y prime )dσ(y prime ) = 0 then the discrete singular integral operator TΩf(x) = qq f(x - αky prime )Ω(y prime )dσ(y prime ) and the associated maximal operator TΩ*f(x) = qq f(x - αky prime )Ω(y prime )dσ(y prime ) | are both bounded in the space L2(Rn). The theorems in this paper improve a result by Duoandikoetxea and Rubio de Francia in the L2 case.
引用
收藏
页码:235 / 244
相关论文
共 50 条
  • [31] Lp boundedness for the multilinear singular integral operator
    Hu, G
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (03) : 437 - 449
  • [32] ON THE NORM OF SINGULAR INTEGRAL OPERATOR ON CURVES WITH CUSPS
    DUDUCHAVA, R
    KRUPNIK, N
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 20 (04) : 377 - 382
  • [33] Weighted Morrey spaces and a singular integral operator
    Komori, Yasuo
    Shirai, Satoru
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (02) : 219 - 231
  • [34] Lp boundedness for a maximal singular integral operator
    Tao, Xiangxing
    Hu, Guoen
    FORUM MATHEMATICUM, 2022, 34 (05) : 1297 - 1312
  • [35] A PARABOLIC SINGULAR INTEGRAL OPERATOR WITH ROUGH KERNEL
    Chen, Yanping
    Ding, Yong
    Fan, Dashan
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 84 (02) : 163 - 179
  • [36] THEORY OF SINGULAR INTEGRAL OPERATOR ON AN INFINITE CONTOUR
    MOTKIN, AS
    DOKLADY AKADEMII NAUK BELARUSI, 1975, 19 (04): : 301 - 304
  • [37] SINGULAR INTEGRAL OPERATOR ENCOUNTERED IN SCATTERING THEORY
    PEARSON, DB
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (08) : 2425 - &
  • [38] Lp Boundedness for the Multilinear Singular Integral Operator
    Guoen Hu
    Integral Equations and Operator Theory, 2005, 52 : 437 - 449
  • [39] On the Dimension of the Kernel of a Singular Integral Operator with Shift
    Kravchenko, Viktor G.
    Marreiros, Rui C.
    OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 197 - 220
  • [40] Cauchy integral and singular integral operator over closed Jordan curves
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Kats, Boris
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (01): : 1 - 15