Hyperbolicity and optimal coordinates for the three-dimensional supersonic Euler equations

被引:0
|
作者
Hong Kong Univ of Science and, Technology, Kowloon, Hong Kong [1 ]
机构
来源
SIAM J Appl Math | / 4卷 / 893-928期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] On the three-dimensional Euler equations with a free boundary subject to surface tension
    Schweizer, B
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06): : 753 - 781
  • [32] Some explicit solutions of the three-dimensional Euler equations with a free surface
    Calin I. Martin
    Mathematische Annalen, 2022, 384 : 1653 - 1673
  • [33] Remarks on the blow-up criterion of the three-dimensional Euler equations
    Chae, DH
    NONLINEARITY, 2005, 18 (03) : 1021 - 1029
  • [34] Aerodynamic optimization using sensitivity derivatives from a three-dimensional supersonic Euler code
    Old Dominion Univ, Norfolk, United States
    J Aircr, 3 (405-411):
  • [35] Aerodynamic optimization using sensitivity derivatives from a three-dimensional supersonic Euler code
    Korivi, VM
    Newman, PA
    Taylor, AC
    JOURNAL OF AIRCRAFT, 1998, 35 (03): : 405 - 411
  • [36] Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates
    Wilson, F.
    Neukirch, T.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2018, 112 (01): : 74 - 95
  • [37] Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
    Arroyo, A
    Hertz, FR
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05): : 805 - 841
  • [38] ACYLINDRICAL HYPERBOLICITY OF THE THREE-DIMENSIONAL TAME AUTOMORPHISM GROUP
    Lamy, Stephane
    Przytycki, Piotr
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (02): : 367 - 392
  • [39] Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion
    Waltz, J.
    Canfield, T. R.
    Morgan, N. R.
    Risinger, L. D.
    Wohlbier, J. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 196 - 209
  • [40] Euler-α equations in a three-dimensional bounded domain with Dirichlet boundary conditions
    Yuan, Shaoliang
    Huang, Lehui
    Cheng, Lin
    You, Xiaoguang
    OPEN MATHEMATICS, 2024, 22 (01):