Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials

被引:13
|
作者
Crescimanno, M. [1 ,1 ]
Landsberg, A.S. [1 ,1 ]
机构
[1] Department of Physics, Youngstown State University, Youngstown, OH 44555-2001, United States
关键词
Electron energy levels - Fermions - Fourier transforms - Harmonic analysis - Mathematical models - Matrix algebra - Specific heat;
D O I
10.1103/PhysRevA.63.035601
中图分类号
学科分类号
摘要
The thermodynamic properties of N trapped non-interacting bosons and fermions are presented. The peculiar relationship between the heat capacities resulting between the bose and Fermi systems are shown. The excitation spectra of one-dimensional Fermi and Bose systems are shown to be identical. The proofs of equivalence are provided on the basis of combinatoric augment.
引用
收藏
页码:356011 / 356013
相关论文
共 50 条
  • [41] Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment
    Grining, Tomasz
    Tomza, Michal
    Lesiuk, Michal
    Przybytek, Michal
    Musial, Monika
    Massignan, Pietro
    Lewenstein, Maciej
    Moszynski, Robert
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [42] Emergence of Wigner molecules in one-dimensional systems of repulsive fermions under harmonic confinement
    Abedinpour, Saeed H.
    Polini, Marco
    Gao, Xianlong
    Tosi, M. P.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [43] One-dimensional bosons in three-dimensional traps
    Lieb, EH
    Seiringer, R
    Yngvason, J
    PHYSICAL REVIEW LETTERS, 2003, 91 (15)
  • [44] Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach
    Pecak, D.
    Dehkharghani, A. S.
    Zinner, N. T.
    Sowinski, T.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [45] Spectral Analysis of One-Dimensional Dirac Operators with Slowly Decreasing Potentials
    Mathieu Martin
    Mathematical Physics, Analysis and Geometry, 2003, 6 : 385 - 398
  • [46] SPECTRAL GAPS OF THE ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS
    Mikhailets, Vladimir
    Molyboga, Volodymyr
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2009, 15 (01): : 31 - 40
  • [48] CORRELATION RADIUS FOR ONE-DIMENSIONAL IMPENETRABLE BOSONS
    ITS, AR
    IZERGIN, AG
    KOREPIN, VE
    PHYSICS LETTERS A, 1989, 141 (3-4) : 121 - 124
  • [49] Dynamic response of one-dimensional bosons in a trap
    Golovach, Vitaly N.
    Minguzzi, Anna
    Glazman, Leonid I.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [50] One-dimensional optical lattices and impenetrable bosons
    Cazalilla, MA
    PHYSICAL REVIEW A, 2003, 67 (05):