Monte Carlo bounding techniques for determining solution quality in stochastic programs

被引:14
|
作者
Mak, Wai-Kei [1 ]
Morton, David P. [2 ]
Wood, R. Kevin [3 ]
机构
[1] Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, United States
[2] Grad. Program in Operations Research, The University of Texas at Austin, Austin, TX 78712, United States
[3] Operations Research Department, Naval Postgraduate School, Monterey, CA 93943, United States
来源
Operations Research Letters | 1999年 / 24卷 / 01期
关键词
Number:; DMI-9702217; Acronym:; NSF; Sponsor: National Science Foundation; -; ONR; Sponsor: Office of Naval Research; AFOSR; Sponsor: Air Force Office of Scientific Research; Sponsor: University of Texas at Austin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:47 / 56
相关论文
共 50 条
  • [41] Bounding uncertainty in Monte Carlo ray-trace models
    Sánchez, MC
    Mahan, JR
    Nevárez, F
    Sorensen, IJ
    SENSORS, SYSTEMS AND NEXT-GENERATION SATELLITES V, 2001, 4540 : 366 - 373
  • [42] Stochastic Fractional Hamiltonian Monte Carlo
    Ye, Nanyang
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3019 - 3025
  • [43] Multidimensional stochastic approximation Monte Carlo
    Zablotskiy, Sergey V.
    Ivanov, Victor A.
    Paul, Wolfgang
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [44] Stochastic Gradient Hamiltonian Monte Carlo
    Chen, Tianqi
    Fox, Emily B.
    Guestrin, Carlos
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1683 - 1691
  • [45] An Overview of Stochastic Approximation Monte Carlo
    Liang, Faming
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (04): : 240 - 254
  • [46] Stochastic approximation in Monte Carlo computation
    Liang, Faming
    Liu, Chuanhai
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 305 - 320
  • [47] Stochastic Gradient Population Monte Carlo
    El-Laham, Yousef
    Bugallo, Monica F.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 46 - 50
  • [48] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156
  • [49] Monte Carlo Methods and Stochastic Processes
    Tsodikov, Alexander
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) : 160 - 160
  • [50] MONTE-CARLO TECHNIQUES FOR PREDICTION AND FILTERING OF NON-LINEAR STOCHASTIC PROCESSES
    HANDSCHIN, JE
    AUTOMATICA, 1970, 6 (04) : 555 - +