Using genetic algorithms to solve inverse problems

被引:0
|
作者
Wang, Q.J. [1 ,2 ,3 ,4 ]
机构
[1] Ctr. for Environ. Applied Hydrology, Dept. of Civ. and Environ. Eng., University of Melbourne, Parkville, Vic. 3052, Australia
[2] Tsinghua University, Beijing, China
[3] University College Galway, Ireland
[4] University of Melbourne, Australia
来源
关键词
Inverse problems - Mathematical models - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:323 / 328
相关论文
共 50 条
  • [21] Genetic algorithms solve batch scheduling problems, maintain flexibility
    Lipton, MJ
    Rosenof, HP
    I&CS-INSTRUMENTATION & CONTROL SYSTEMS, 1996, 69 (05): : 43 - 47
  • [22] Using Maple for symbolic differentiation to solve inverse problems
    Jegou, S
    MAPLETECH, 1997, 4 (02): : 32 - 40
  • [23] Speeding convergence of genetic algorithms for inverse scattering problems
    Meng, ZQ
    Misaka, H
    2002 3RD INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2002, : 414 - 417
  • [24] Using genetic algorithms to solve construction time-cost trade-off problems
    Univ of Illinois at Urbana-Champaign, Urbana, United States
    J Comput Civ Eng, 3 (184-189):
  • [25] Using genetic algorithms to solve construction time-cost trade-off problems
    Feng, CW
    Liu, LA
    Burns, SA
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1997, 11 (03) : 184 - 189
  • [26] Using Genetic Algorithms and Core Values of Cooperative Games to Solve Fuzzy Multiobjective Optimization Problems
    Wu, Hsien-Chung
    AXIOMS, 2024, 13 (05)
  • [27] Using genetic algorithms to solve the Ship Berthing Problem
    Goh, KS
    Fu, ZH
    Lim, A
    IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 465 - 471
  • [28] Using genetic algorithms to solve luggage typesetting problem
    Lee, Shao-Lun
    Hong, Wei-Chiang
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2886 - 2892
  • [29] Models to classify the difficulty of genetic algorithms to solve continuous optimization problems
    Rodriguez-Maya, Noel E.
    Flores, Juan J.
    Verel, Sebastien
    Graff, Mario
    NATURAL COMPUTING, 2024, 23 (02) : 431 - 451
  • [30] How efficient are genetic algorithms to solve high epistasis deceptive problems?
    Gras, Robin
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 242 - 249