Ljusternik-Schnirelmann theory on C1-manifolds

被引:0
|
作者
Szulkin, Andrzej [1 ]
机构
[1] Department of Mathematics, University of Stockholm, Box 6701, Stockholm,11385, Sweden
来源
Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire | 1988年 / 5卷 / 02期
关键词
D O I
10.1016/S0294-1449(16)30348-1
中图分类号
学科分类号
摘要
23
引用
收藏
页码:119 / 139
相关论文
共 50 条
  • [21] C-1 FUZZY MANIFOLDS
    FERRARO, M
    FOSTER, DH
    FUZZY SETS AND SYSTEMS, 1993, 54 (01) : 99 - 106
  • [22] DUALITY AND INTERSECTION THEORY IN COMPLEX MANIFOLDS .1.
    TOLEDO, D
    TONG, YLL
    MATHEMATISCHE ANNALEN, 1978, 237 (01) : 41 - 77
  • [23] Quantitative C1-estimates on Manifolds
    Gueneysu, Batu
    Pigola, Stefano
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (13) : 4103 - 4119
  • [24] Kink manifolds in (1+1)-dimensional scalar field theory
    Izquierdo, AA
    Leon, MAG
    Guilarte, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : 209 - 229
  • [25] Morse theory for C*-algebras: a geometric interpretation of some noncommutative manifolds
    Milani, Vida
    Rezaei, Ali Asghar
    Mansourbeigi, Seyed M. H.
    APPLIED GENERAL TOPOLOGY, 2011, 12 (02): : 175 - 185
  • [26] Elliptic dilation–contraction problems on manifolds with boundary. C*-theory
    A. Yu. Savin
    B. Yu. Sternin
    Differential Equations, 2016, 52 : 1331 - 1340
  • [27] C1,θ-Estimates on the distance of inertial manifolds
    Arrieta, Jose M.
    Santamaria, Esperanza
    COLLECTANEA MATHEMATICA, 2018, 69 (03) : 315 - 336
  • [28] COMPACT KAHLERIAN MANIFOLDS WITH C1=0
    BEAUVILLE, A
    ASTERISQUE, 1985, (126) : 181 - 192
  • [29] A Two-Category of Hamiltonian Manifolds, and a (1+1+1)Field Theory
    Cazassus, Guillem
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (05) : 2101 - 2144
  • [30] On C*-algebras and K-theory for infinite-dimensional Fredholm manifolds
    Dumitrascu, Dorin
    Trout, Jody
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (14) : 2528 - 2550