Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers

被引:0
|
作者
Wohlmuth, Barbara I.
机构
[1] Courant Inst. of Math. Sciences, 251 Mercer Street, New York, NY 10012, United States
[2] Mathematisches Institut, Universität Augsburg, Universitätsstrasse 14, D-86 159 Augsburg, Germany
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1636 / 1658
相关论文
共 50 条
  • [41] A New a Posteriori Error Estimate for Adaptive Finite Element Methods
    Huang, Yunqing
    Wei, Huayi
    Yang, Wei
    Yi, Nianyu
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 63 - 74
  • [42] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [43] Recovery type a posteriori error estimates in finite element methods
    Zhang Z.
    Yan N.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (2): : 235 - 251
  • [44] Recovery type a posteriori error estimates in finite element methods
    Zhang, Z.
    Yan, N.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (02): : 235 - 251
  • [45] Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    Feischl, Michael
    Fuehrer, Thomas
    Heuer, Norbert
    Karkulik, Michael
    Praetorius, Dirk
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (03) : 309 - 389
  • [46] On the mixed finite element method with Lagrange multipliers
    Babuska, I
    Gatica, GN
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (02) : 192 - 210
  • [47] Mortar finite elements with dual Lagrange multipliers: Some applications
    Lamichhane, BP
    Wohlmuth, BI
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 319 - 326
  • [48] A posteriori error estimation and mesh adaptivity for finite volume and finite element methods
    Barth, TJ
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 183 - 202
  • [49] A posteriori error estimators related to equilibrium defaults of finite element solutions for elastostatic problems
    Maunder, EAW
    Zhong, HG
    Beckers, P
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 26 (03) : 171 - 192
  • [50] GOAL-ORIENTED LOCAL A POSTERIORI ERROR ESTIMATORS FOR H(div) LEAST-SQUARES FINITE ELEMENT METHODS
    Cai, Zhiqiang
    Ku, Jaeun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2564 - 2575