DYNAMIC PROGRAMMING APPROACH TO THE COMPLETE SET PARTITIONING PROBLEM.

被引:0
|
作者
Yeh, D.Yun [1 ]
机构
[1] Arizona State Univ, Tempe, AZ, USA, Arizona State Univ, Tempe, AZ, USA
来源
BIT (Copenhagen) | 1986年 / 26卷 / 04期
关键词
MATHEMATICAL TECHNIQUES - Set Theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complete set partitioning (CSP) problem is a special case of the set partitioning problem where the coefficient matrix has 2**m minus 1 columns, each column being a binary representation of a unique integer between 1 and 2**m minus 1, m greater than equivalent to 1. It has wide applications in the area of corporate tax structuring in operations research. In this paper we propose a dynamic programming approach to solve the CSP problem, which has time complexity O(3**m), where n equals 2**m minus 1 is the size of the problem space.
引用
收藏
页码:467 / 474
相关论文
共 50 条
  • [21] Set partitioning approach to the Multiple Depot Vehicle Scheduling Problem
    Bianco, L.
    Mingozzi, A.
    Ricciardelli, S.
    Optimization Methods and Software, 1994, 3 (1-3) : 163 - 194
  • [22] A new modeling and solution approach for the set-partitioning problem
    Lewis, Mark
    Kochenberger, Gary
    Alidaee, Bahram
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (03) : 807 - 813
  • [23] Solving quadratic programming problem via dynamic programming approach
    Saber, Naghada
    Sulaiman, Nejmaddin
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 473 - 478
  • [24] On the dynamic temperature conduction problem.
    Muntz, CH
    MATHEMATISCHE ZEITSCHRIFT, 1934, 38 : 323 - 337
  • [25] The problem of absolute stability: a dynamic programming approach
    Margaliot, M
    Gitizadeh, R
    AUTOMATICA, 2004, 40 (07) : 1247 - 1252
  • [26] A Dynamic Programming Approach to the Rank Aggregation Problem
    Lu, Yu
    He, Ying
    2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, : 517 - 524
  • [27] SOLVING THE DYNAMIC OPTIMAL SET PARTITIONING PROBLEM WITH ARRANGEMENT OF CENTERS OF SUBSETS
    Kiseleva, E. M.
    Koriashkina, L. S.
    Sheychenko, T. A.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (06) : 842 - 853
  • [28] ALGORITHM FOR SET PARTITIONING PROBLEM
    GONDRAN, M
    LAURIERE, JL
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1974, 8 (NV1): : 27 - 40
  • [29] An Approximate Dynamic Programming Approach to the Dynamic Traveling Repairperson Problem
    Shin, Hyung Sik
    Lall, Sanjay
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2286 - 2291
  • [30] A new approach to characterize the solution set of a pseudoconvex programming problem
    Son, T. Q.
    Kim, D. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 333 - 340