ON THE MINIMUM DISTANCE OF A CYCLIC CODE.

被引:0
|
作者
Roos, C.
机构
来源
Delft progress report | 1981年 / 6卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that both the BCH bound and the Hartmann-Tzeng bound for the minimum distance of a cyclic code can be obtained quite easily as consequences of an elementary result on its defining set of zeros.
引用
收藏
页码:165 / 169
相关论文
共 50 条
  • [31] On the minimum distance graph of an extended Preparata code
    C. Fernández-Córdoba
    K. T. Phelps
    Designs, Codes and Cryptography, 2010, 57 : 161 - 168
  • [32] On the minimum distance graph of an extended Preparata code
    Fernandez-Cordoba, C.
    Phelps, K. T.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (02) : 161 - 168
  • [33] Influence of interleaver on minimum turbo code distance
    Wu, KY
    Li, H
    Wang, YM
    ELECTRONICS LETTERS, 1999, 35 (17) : 1456 - 1458
  • [34] Hardness of approximating the minimum distance of a linear code
    Dumer, I
    Micciancio, D
    Sudan, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 22 - 37
  • [35] Speech:: A special code.
    Féry, C
    JOURNAL OF PRAGMATICS, 1999, 31 (01) : 129 - 134
  • [36] Dissecting the genetic code.
    Schimmel, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U170 - U170
  • [37] READING THE SUPERMARKET CODE.
    Hildebrand, Al
    Laser Focus, 1974, 10 (09):
  • [38] AN UPPER BOUND ON THE MINIMUM DISTANCE OF A CONVOLUTIONAL CODE
    ROBINSON, JP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (04) : 567 - 571
  • [39] A new formula for the minimum distance of an expander code
    Mallik, Sudipta
    arXiv, 2021,
  • [40] Hardness of approximating the minimum distance of a linear code
    Micciancio, D
    Dumer, I
    Sudan, M
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 252 - 252