An explicit pseudo-spectral scheme with almost unconditional stability for cahn-hilliard equation

被引:0
|
作者
Department of Mathematics, Shaanxi Normal University, Xi'an 710062, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A conservative nonlinear difference scheme for the viscous Cahn-Hilliard equation
    Choo S.M.
    Chung S.K.
    Journal of Applied Mathematics and Computing, 2004, 16 (1-2) : 53 - 68
  • [42] Linear Stability Analysis of the Cahn-Hilliard Equation in Spinodal Region
    Ham, Seokjun
    Jeong, Darae
    Kim, Hyundong
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [43] A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY
    Kim, Junseok
    Lee, Hyun Geun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 265 - 276
  • [44] Linear Stability Analysis of the Cahn-Hilliard Equation in Spinodal Region
    Ham, Seokjun
    Jeong, Darae
    Kim, Hyundong
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [45] SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
    Frolovskaya, O. A.
    Admaev, O. V.
    Pukhnachev, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 324 - 334
  • [46] A new formulation of the Cahn-Hilliard equation
    Miranville, A
    Piétrus, A
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) : 285 - 307
  • [47] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [48] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [49] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [50] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077